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ABSTRACT

NUMERICAL SIMULATION

OF THE NONLINEAR RESPONSE OF COMPOSITE PLATES

UNDER COMBINED THERMAL AND ACOUSTIC LOADING

Jayashree Moorthy I and Chuh Mei 2

A time-domain study of the random response of a laminated plate subjected to

combined acoustic and thermal loads is carried out. The features of this problem also

include given uniform static inplane forces. The formulation takes into consideration a

possible initial imperfection in the flatness of the plate. High decibel sound pressure

levels along with high thermal gradients across thickness drive the plate response into

nonlinear regimes. This calls for the analysis to use von Karman large deflection strain-

displacement relationships. A finite element model that combines the von Karman strains

with the first-order shear deformation plate theory is developed. The development of

the analytical model can accommodate an anisotropic composite laminate built up of

uniformly thick layers of orthotropic, linearly elastic laminae. The global system of finite

element equations is then reduced to a modal system of equations. Numerical simulation

using a single-step algorithm in the time-domain is then carried out to solve for the modal

coordinates. Nonlinear algebraic equations within each time-step are solved by the

Newton-Raphson method. The random gaussian filtered white noise load is generated

using Monte Carlo simulation. The acoustic pressure distribution over the plate is capable

of accounting for a grazing incidence wavefront. Numerical results are presented to

study a variety of cases.

Graduate Research Assistant.

Professor, Department of Aerospace Engineering, Old Dominion University, Norfolk, Virginia 23529-0247.
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INTRODUCTION
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Acoustic fatigue and reliability have been serious considerations in the design of

aircraft structural components for many years now. Reports of aircraft skin damage

near jet engine exhausts, prompted the industry to go into an intensive study of

this problem. Experimental activities were carried out on scaled models as well

as on prototype assemblies. Analytical studies were performed using simple plate

models under random pressure fluctuations. Given the limitations of computational

abilities, these were simplistic linear models of panel response. The predictions of

panel behavior from these models quite often overestimated response levels. The

results from analytical work showed very poor agreement with test data. The design

processes were, therefore, based on empirical relations derived using results from

tests to modify the simple analytical models. These design guidelines, together with

improved jet engine configurations, seemed to have alleviated the need for further

analytical development for some time.

As modern day aircraft pushed their performance envelope further, the oper-

ating environment made greater demands on their structures. Apart from large

pressure fluctuations in their vicinity, aerodynamic heating of exterior skin panels

implied a high temperature environment. Failure and reliability had to be under-

stood under combined high thermal and acoustic loading conditions. Moreover, the

advent of advanced composite laminated structures brought on a new crop of



design problems. Their ability to sustain large displacements without yielding,

moved panel responseand behavior into the nonlinear regime.

All these changes reinvigorated and stepped up new research in the area of

sonic fatigue. Although, this time around, there was a growing need to develop rea-

sonably accurate analytical models. With the use of composites, it is impractical as

well as inefficient to experimentally evaluate every conceivable design configuration.

Analytical models, as close to being realistic as possible, could be used to numeri-

cally experiment with a multitude of configurations and predict a potentially good

design. Towards this goal, a great deal of recent research has tried to refine models

used for prediction of structural response of panels under random acoustic load-

ing. There are fewer instances of work involving both acoustic and thermal loading.

The explosive growth in the computational power of present day computers along

with indepth knowledge in the application of finite element techniques in structural

mechanics has greatly facilitated this development.

1.1 Literature Review

A discussion of the literature on acoustic fatigue must be preceded by a review of

the research into causes and types of loading. One of the earliest works done in this

area is a thoeretical study by Lighthill [1], establishing the relationship between

jet exhaust velocities and intensity of sound radiation. Later on, Lansing et al.

[2] studied the influence of impinging jet plumes on structures in increasing the

pressure loads. Another related case occurs when ground reflections of pressure

waves affect the pressure distribution near a structure. This has been studied by

Scholton [3]. The second factor giving rise to pressure fluctuations is the presence

of turbulent boundary layers. The earliest work giving pressure measurements in

subsonic flow was by Bull [4]. The nature of the pressure spectrum in such a case was

given by Coe and Chyu [5]. In the same study, the two authors also demonstrated
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the interaction between boundary layers and high velocity jet exhaust. Pressure

fluctuations are created due to instabilities such as cavities and shock waves, that

arise from such mixing. These studies primarily established the sources of acoustic

excitation in aircraft. Further research has grown into a whole new discipline in

this area (computational aeroacoustics) and will not be dealt with here.

1.1.1 Experimental Work

Investigations into the response of simple structures to loading as discussed above,

started predominantly as experimental work [6-9]. These, along with many more

tests were compiled into 'nomographs' and design guides [10-12]. Test results on

honeycomb sandwich panels using fiber reinforced and titanium bonded plates were

produced by Holehouse [13], and Jacobson and van der Hyde [14]. Composite panels

were tested by Wolfe and Jacobson [15], and White [16]. Test data were compared

with linear predictions in [15], and by White and Mousley [17]. Further experimen-

tal work [18-20,22], when compared with theoretical results, served to demonstrate

the shortcomings of linear theories in accurate predictions. This initiated the ne-

cessity to account for nonlinearities in modelling response behaviors, especially for

composite structures. Later work [23-29] studied the large deformation aspects more

thoroughly. A comprehensive review of existing test data to show the presence of

large deformation was given by Mei [29]. Of these, Bennouna and White [25] com-

pared nonlinear analytical and experimental results for beams. The paper by van

der Hyde and Kolb [23] contains test data for a stiffened panel. Mei and Wentz

[24] compared results from the equivalent linearization method with tests on rect-

angular panels. White and Teh [27] also studied the nonlinear behavior of a panel

under in-plane compressive loads (less than buckling) and acoustic excitation using

test results and Rayleigh-Pdtz Solutions. Robinson et al. [28] also tried to match

simulation strain spectra with test results for flat and stiffened carbon panels under

3



high intensity acoustic loading. This study observed an 'overprediction in the effect

of nonlinearity' in the nonlinear simulation model. The boundary conditions used

allowed for elastic supports. The pressure time-history used was obtained directly

from the test readings.

1.1.2 Analytical Work

Linear Response:

The earliest theoretical papers, apart from those with experimental work men-

tioned above, were all based on linear theories [30-39]. A normal-mode method to

determine multi-mode response under a space and time correlated pressure distri-

bution was given by Powell [31]. This was simplified by Clarkson [34]. The studies

by Samuels and Eringen [32], Bogdanoff and Goldberg [36], Crandall and Yildiz [37]

and Mercer [38] all dealt with beam structures. The first paper amongst these [32],

used a generalized Fourier series in combination with a Timoshenko beam model.

The latter two [36,37] showed that infinite values for mean:square responses under

infinite mean-squared input existed only for particular models of excitation. Miles

[30], Eringen [33] and Elishakoff [39] presented results for plates. The Galerkin

approach was used by Elishakoff [39].

Nonlinear Response:

Among the various methods available for solving nonlinear random vibration

problems, the approach based on the Fokker-Planck-Kolmogorov (FPK) equation

was an early entrant. The mathematical background for the application of the FPK

equation has been given by Caughey [40]. This method generates a governing dif-

ferential equation for the probability density function of a Markov process. The

solution to the FPK equation as applied to the Duffing oscillator has been studied

by Crandall [41], Caughey [42] and Lyon [43,44], among others. Caughey and Ma

[45] have given exact solutions to a few nonlinear single-degree-of-freedom systems.
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In the case of continuous nonlinear systems, approximate solutions have been ob-

tained [46-50]. Nash [46] has compared approximate solutions, using four different

methods, to a single-degree-of-freedom reduction of the large amplitude vibration of

plates and shells. He has numerically integrated the reduced equation; represented

the equation of motion as well as the compatibility equation by a finlte-difference

model and subsequently integrated them; used the FPK exact solution; and finally,

also used the equivalent linearization approximatioh. Ahmadi et al. [47] compare

the FPK approach and the equivalent linearization technique against a perturbation

method for the nonlinear response of plates under random loads.

The perturbation technique was extended to stochastic vibration problems by

Crandall [51]. In addition, multi-degree-of-freedom systems [52,53] and continuous

systems [46,47,54] have been studied using this method. Another technique for solu-

tion is the stochastic averaging method, used when there is narrow-band excitation

of a lightly-damped system [55-58]. A normal-mode approach directly applied to

stresses has been used by Maymon [59] .

The one technique that proved to be very effective and convenient in appli-

cations for nonlinear structural systems is the equivalent linearization technique

[60-91]. The pioneers in adapting this method to stochastic systems are Booton

[60] and Caughey [61]. It was then refined and made less cumbersome, for gaussian

processes in particular [62,63]. Initial application of the equivalent linearization

method was for single-degree-of-freedom systems [64, 65]; the Duffing oscillator un-

der broad-band loading [66,67]; and under narrow-band loading [68]. A comparison

with perturbation solutions for systems with small linearities was given by Crandall

[64]. Closed form solutions were obtained by Lyon [66], and Iwan and Yang [67]. A

significant advantage of this method is its easy extension to multi-degree-of-freedom

systems [69-73]. Spanos [73] and Roberts [74] showed good agreement with results
z

from direct simulation solutions.
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The equivalent linearization technique has been used to study the nonlinear

random response of beams [75-79] and isotropic plates [46,47,80-84]. These include

single-mode as well as multiple-mode solutions. Langley [76] presents a formulation

that directly solves for the response transfer function by using a Cholesky factoriza-

tion of the equivalent linear equation. Miles [84] modifies the equivalent linearization

procedure such that the response need no longer be assumed ganssian. He compares

single-mode results of the fatigue-life for a plate with those obtained from numerical

simulation and from the probabilistic estimate for damage rate. The analytical so-

lutions for the response of composite laminated plates under acoustic loading have

primarily been presented by Mei and his associates [85-91]. All these papers give

single-mode solutions. The paper by Mei and Wentz [87] studies anti-symmetric

angle-ply laminates and the rest pertain to symmetric laminates. Of these, Ref.[88]

deals with nonlinear damping, Ref.[89] studies the effect of transverse shear, Ref.[90]

uses elastically restrained edges, and Ref.[91] uses mixed boundary conditions.

Some excellent review papers bring up to date the developments in random

vibrations until the mid-eighties [92-95].

Finite Element Methods:

Probably the earliest effort to model a random vibration problem using finite

elements was by Jacobs and Lagerquist [96]. This was followed by a few more

which were still restricted to linear theory [97-10011 Olson [98] modelled the excita-

tion cross spectral density over each element with a polynomial function and then

proceeded with the spatial integration. Dey [99] presents solutions using a matrix

inversion method and the normal mode method. The global matrices are formed

using the finite element package ASKA, and subsequently used as inputs in the

formulation that follows. Apart from these, initial applications of finite elements

relied on large programs like NASTRAN [18,22,35]. The first instance of a finite

element model applied to a nonlinear random response problem seems to be in the

6
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paper by Hwang and Pi [101]. A conforming triangular element has been used

to develop all the global matrices for a plate system. The inplane displacement

equations are eliminated by static condensation and the equivalent linearization

technique is then applied. This was followed by work on isotropic beams and plates

by Mei and his associates [102-105]. All these studies were based on the equivalent

linearization method. Random response of beams was studied by Mei and Chiang

[102] and Chiang and Mei [103]. This was followed up by a study of thermally

buckled beams by Locke and Mei [104]. The coupled thermo-acoustic problem was

treated in two steps. Thermal buckling analysis solutions were used for the random

vibration analysis as initial deflections. The study on beams was then extended to

plates by Locke [105]. The formulations were similar in the two cases. A uniform

white noise gaussian pressure distribution of increasing decibel levels was used. A

24-degree-of-freedom rectangular plate element was utilized. Solutions were com-

pared to their earlier classical single-mode solutions. A convergence study on the

number of modes active in the solution used up to four symmetric modes. The for-

mulation used a static reduction or static condensation concept to eliminate inplane

equations. The mode-shapes for the thermally buckled plate were used to carry out

a modal reduction of the system equations.

The next level of advancement was the inclusion of composite laminated plates

in random vibration analysis [106-108]. Robinson [106] studied the nonlinear ran-

dora vibration of a particular laminated plate using a time-domain approach. A

symmetric quarter-plate model of 48-degree-of-freedom rectangular elements was

subjected to a spatially uniform high-decibel pressure distribution. The nonlinear

equations were carried through every time-step and a Newton-Raphson iteration

scheme was adopted to obtain converging solutions within each time-step. This

simulation, of the nonlinear system of equations, has been implemented using a

7
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modified single-step integration algorithm. Chen [107,108] also worked on com-

posite plates using the equivalent linearization technique. His formulation includes

consideration of nonwhite gaussian processes and processes with non-zero means.

He "has also presented results for different types of loading assumptions, including

spatially random gaussian processes. A normal-modes reduction combined with an

equivalent linearization approach has been verified against solutions from Monte-

Carlo simulations.

Numerical Simulations:

Simulation techniques seemed to have been used popularly as a tool to ver-

ify analytical results obtained from other methods [46,73,74,84,107,109]. The first

attempt at formulating a Monte-Carlo technique for a geometrically nonlinear sys-

tem was likely by Dowell [110]. Most efforts at applying the Monte-Carlo simula-

tion technique for a random vibration problem concentrate on developing suitable

methods of load generation. Some of the research in load modelling was not in

combination with numerical simulation, although they did lay the groundwork for

further study [33,111,112]. The paper by Dyer [111] models a correlated pressure

field which is convecting and at the same time decaying over a plate. As the scale

of correlation distances grows much smaller than the plate dimensions, the pressure

field reduces to a purely uncorrelated random 'raindrop' process as mentioned by

Eringen [33]. The last of these papers [112] offers another model for the pressure

load by treating it as a correlated stream of impulses arriving randomly.

A digitally generated gaussian random load is used by Belz [113] to study the

nonlinear vibration of a beam. The power-residue method has been used to gener-

ate a sequence of 'pseudo'random' numbers. These are then transformed to a set of

gaussian numbers, which in turn are scaled Suitably to give the random load vector.

A finite-difference form of the equation of motion is solved assuming that the load is

a concentrated point load. Robinson [106] uses a similar method for load generation
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and goes on to use the single-step algorithm developed by Zienkiewicz et al. [114] to

solve a system of finite element equations. Other than these works, a major contri-

bution to the field of Monte-Carlo simulation has come from Shinozuka, Vaicaitis,

et al. The simulation of a multivariate, multidimensional random process using a

combination of cosine functions with random phase was developed by Shinozuka

[1151118]. Each of the functions has aweighting amplitude and the random phase

angles are distributed uniformly between 0 and 21r. This series of cosine functions

:is summed at constant' frequency and wave-number intervals. The weighting am-

plitude is determined from the cross-spectral density prescribed. The simulation

process can be applied to non-homogeneous processes, too, the 'non-homogeneity'

being defined by a constant spectral-density that may be made 'transient' by a de-

terministic function of time and space. Another method based on the generation of

discrete frequency functions corresponding to the desired random process was given

by Wittig and Sinha [119]. A quick FFT of this generated series then results in the

actual random process. Sengupta [120] formulated a procedure to derive the spec-

trum of a decaying, non-homogeneous field. This modelling is particularly directed

at propeller-driven aircraft excitation, where the excitation signal has dominant

harmonic components at the blade-passage frequency.

Solutions based on the Shinozuka approach for various types of panels were

given by Vaicaitis and others [121-126]. The formulation for the plate governing

equations is based on an analytical Galerkin method. A fifth-order Runge-Kutta

integration scheme is then utilized. Results generated cover a broad range of sta-

tistical characteristics including variances, probability densities, peak probability

densities, crossing-rates, damage estimates, etc. The papers include response data

for stiffened panels and composite panels. A variety of loading possibilities due to

turbulent boundary layers, exhaust noisei unsteady aerodynamic pressure, cavity

9



pressure, shock wave impingement, parametric excitations as well as aerodynamic

heating have been considered.

1.1.3 Thermal Effects

High performance military aircraft of today and the future high speed civil trans-

port planes can have high acoustic and thermal loads occurring simultaneously

for significant durations. The effects of high temperature loading on random re-

sponse, therefore, have become a very relevant concern in aircraft structural design.

Thermal loading conditions in combination with acoustic loading have been ex-

perimentally studied before [20,109,127-130]. Random vibration experiments were

conducted on initially buckled beams by Seide and Adami [109]. An attempt was

made at predicting the onset of the 'snap-through' phenomenon. The earlier activi-

ties [127-130] showed a decrease in the life of all types of panels (isotropic, stiffened,

composite), at a particular stress level, with increasing temperature. All these tests

reaffirmed the existence of the 'snap-through' phenomenon near critical buckling

loads and the necessity to develop better analytical models.

More recently, Ng along with his partners [26,131,132] studied plates under

thermal [131,132] as well as static in-plane [26] loading. The tests in Ref.[131] seem

to indicate that severe snap-through and chaotic motion occur more with rigidly

clamped edge conditions. A little leeway in in-plane motion, as is usually the case

in everyday structural assemblies, may alleviate such extreme stress cycles. Ng

and White [26] used the Rayleigh-Ritz method to study a composite plate under

inplane compressive loads in the buckling/postbuckling range. Comparisons were

made against test data. Thermal effects on random response were also studied by

Lee [83]. Apart from temperature variation over an isotropic plate surface, he also

considers thermal gradients across thickness, or, thermal moments. The analysis is

a single-mode representation of the equations of motion, solved using the equivalent

10
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linearization technique. He notes that the influence of temperature variation on the

rms displacement and stress values steadily drops off as the intensity of acoustic

loading increases. In addition, he concludes that although thermal moments make

little difference in the displacement solutions, normal stresses depend on the tem-

perature gradient. This becomes significant when considering fatigue life aspects

for a structure.

A good overview of research discussed in the above sections is available in a

report by Clarkson [133] and a recent paper by Vaicaitis [134].

w

E--

H

1.2 Outline of Present Study

A Monte Carlo simulation of a laminated plate under simultaneous acoustic and

thermal loading is the main focus of this study. As mentioned before, the combina-

tion of temperature loads and high-intensity acoustic pressure fluctuations is a very

legitimate concern in the development of the high speed transport aircraft. Existing

literature on this problem still leaves room for good numerical models for prediction

of structural response under such conditions. Of the very few published works that

relate to the combined problem, only orm [83] considers thermal gradients, using an

analytical single-mode plate model. None of them utilize the advantages of a finite

element model. The flexibility in modelling an arbitrarily laminated plate under

complicated boundary conditions is exclusively a feature of finite element methods.

As has been demonstrated in earlier research, neither test setups nor real life as-

semblies shov_ purely simply-supported or purely clamped boundary conditions. A

certain amount of in-plane motion is allowed. This can be attempted in a straight

forward manner using finite elements.

The plate theory to be used accounts for transverse shear rotations and strains.

This helps application of the formulation irrespective of plate thickness. Further-

more, accuracy is improved when bending-extension coupling exists, particularly

11
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when the laminate has only a few layers. In addition, higher frequencies are pre-

dicted more accurately as plate flexibility is assumed to be greater in a transverse

shear model.

The use of a numerical simulation technique provides a more detailed picture of

the results than, say, the equivalent linearization technique. A variety of statistical

information including higher-order moments, probability densities, peak probability

densities, etc. can be extracted from response time-histories. Moreover, the spec-

tral densities obtained, more accurately show the widening of peaks expected in

nonlinear responses. With the computational speed and size of today's computers,

an attempt to generate a broad database of results considering various parameters

relevant to random vibration is a viable project.

Nevertheless, a modal reduction of the large system of displacement equations

is carried out. This has the advantage of representing the desired plate system

with a fewer number of time-dependent equations. A multiple mode analysis for a

nonlinear system will show the interaction between modes, which is not available

otherwise. For instance, the relative drop in the rms modal displacement value of

the first mode in a multi-mode solution, as compared to a single-mode solution, as

occurs in some cases, can only be observed by multiple mode approximations. A

further advantage of using a simulation technique is the flexibility available in load

modelling. A spatially correlated pressure distribution, in the case of a travelling-

wave acoustic field that is not normally incident, is generated and its effects on the

response studied.

As stated above, the temperature distribution is assumed to be more general,

including gradients across the thickness. The surface distribution is restricted to

being symmetric, in keeping with data from test setups. The formulation also

accommodates initial imperfections in the plate as well as initial stresses. The
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numerical integration scheme used in this study follows the method implemented

by Robinson [106].

An outline of the material in the following pages is now presented. Chap-

ter 2 develops the finite element formulation of the governing equations and then

transforms them to a modal system of equations, ready for integration in time. In

Chapter 3, the single-step algorithm in combination with the Newton-Raphson it-

eration scheme is developed. The details of generating a gaussian random pressure

time-history, correlated in one spatial dimension, are explained in Chapter 4. The

methods used to generate the response statistics and spectrum are briefly explained.

Other considerations that come up during implementation of the finite element pro-

gram are also discussed here. These include the determination of mode-shapes for

systems where in-plane degrees-of-freedom may or may not be coupled with bend-

ing degrees-of-freedom. Finally, Chapter 5 presents various numerical examples and

offers inferences. Concluding remarks are presented in Chapter 6.
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Chapter 2 m

FINITE ELEMENT FORMULATION B
U

Governing differential equations modelling the nonlinear behavior of a plate

under random dynamic and thermal loads are derived in this chapter. The equations

of motion axe formulated based on the first-order shear deformation plate theory.

2.1 Assumptions

The following are the assumptions and restrictions that go into defining the problem.

• von Karman large deflections

• small strains and rotations

• rotatory inertia included

• orthotropic, linear elastic lamina of uniform thickness

• plane stress

• proportional damping

The application of the first-order theory, including shear deformation, implies

that inpla:ne displacements axe linear functions of the transverse coordinate, z. Also,

straight lines normal to the mid-plane before deformation remain straight but not

normal after deformation. Further, transverse normals are inextensible, i.e., trans-

verse normal strain is zero. As part of the plane stress assumption, transverse

normal stress is treated negligible compared to the inplane and the transverse shear
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stresses. As a consequence of the inplane displacements being linear in z, transverse

shear strains, and therefore stresses, turn out to be constant through the thickness

of the plate (hence not satisfying the free surface zero stress boundary conditions).

To partially rectify this discrepancy, a shear correction factor is used.

2.2 Strain-Displacement Relationships

The displacement field over any element of a shear deformable plate is represented

by

u(x,y,z,t) = ,(x,u,t) + _¢x(x,u,t)

v(_,y,z,t) = v(x,y,t) + z¢,(z,y,t)

w(_,y,z,t) = _(_,y,t) + _o(X,y), (2.2.1)

where u,v,w are the plate mid-plane displacements along z,y,z respectively and

¢_,¢_ are the rotations about y and z axes respectively. Wo(X,y) is the initial

imperfection or the deviation from flatness of the plate. It must be noted here that

wo(x, y) has no restrictions to being smaller than w.

The above five degrees of freedom, u, v,w,¢_, ¢y, are expressed in terms of

element shape functions, N_(see Appendix A), i.e.,

u(x,y,t) = Nja_(t)

v(x,y,t) = Nja_(t)

_(x,y,t) = Yj_[(t)

Cx(x,y,t) = Yia_'(t )

Cy(x,y,t) = Yia_'(t), (2.2.2)

where aj,aj,aj ,aj ,a _ are the values of the displacements u, v, w, ¢x, ¢y at the

jth node of the element (see Fig.l).
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The shape functions, Nj, are chosen to be Lagrangian quadratic interpolation poly-

nomials [135]. The same shape functions are used for all the five degrees of freedom,

since isoparametric integration is to be used over each element.

In general the strain-displacement relationships are written as,

1

_ij = _(ui,.i + uj,i + uk,iuk.j), i;j;k = 1,2,3 (2.2.3)

where a 'comma' followed by a subscript denotes differentiation with respect to that

coordinate. The notation eij represents the Lagrangian nonlinear strain tensor.

Using deflections in the yon Karman sense, it is assumed that components of

strains due to inplane displacements are much smaller than those corresponding to

transverse deflection, w(z,y,t). Thus, the expressions for strains reduce to,

1 (W,_)2
U,_ +_

v,,,+ff

v,,+w,y

= W,. + U,,

E1 "- £11

E2 "-- £22

C4 = 2E23

es = 2e3]

g6 = 2C12 (2.2.4)

Strains with contracted notation subscripts have been simultaneously defined to

facilitate further derivation which uses index notation extensively. Substituting for

U, V, W from_ Eq.(2.2.1) and writing the shear strain terms separately, we have,

_2 = v,_ + z ¢_,_ + _ ,_
c6 u,y + v,_ ¢_,y + Cy,_ 2 w,_ w,y

and

I W,ac WO,X I
-_- W,y Wo,y

W,x Wo,y "q- Wo,x.W,y

17



_4 W,y

Or, in other words,

(2.2.5)

u

and

o i = 1,2,6ei = e'_ + z_i + e_ + _i,

7m = 7: + 7,_, m = 5,4 (2.2.6)

g

where ew is the geometrically nonlinear strain term and the rest are all linear func-

tions of displacements. Note that in writing strain components from (w + Wo) there

is no contribution from derivatives of Wo alone since the plate was strain-free with

initial imperfection, Wo. Next, the displacement functions above are represented in

terms of their shape functions. As mentioned earlier, all matrices and tensors (rank

greater than 2) are described using index subscripts henceforth. Using Eqs.(2.2.2)

and Eqs.(2.2.5) and Eq'(2.2.6), we get,

e'_ = Nj,y at j = 1,...,npe

Ni, , Yj,, ay

Similarly,

= Caa?, l = 1,...,2j (2.2.7)

N_,z 0
= Nj,y

I

w

= Ciz a_ (2.2.8)

where ripe denotes the number of nodes per element which is the maximum value

j can attain. Since the shape functions Nj are common for all degrees of freedom,

the matrix Cit is the same for e_ and tci.
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In like fashion we can write

O

I Nj_ x WO_Z

-- Nj,y Wo,y

Nj,y Wo,z 4" J'_j,x lDo,y

{aT)

= c_jaT,

_= { Ni',Nk'_ )
! N,,_Nk,y
2 2 Nj,_Nk,y

{aT}{a_}

(2.2.9)

C_k '0 '0 i;k = 1,...,npe (2.2.10)•_, -- aj a k ,

w

_I

w

[_,_.,= Nj 0 ,,j
o N¢ at

and

r_ a ¢ m = 5,4 (2.2.11)
"_ml l '

w"Ira-" Nj,y {a_')

= B_j a 7 (2.2.12)

2.3 Stress Resultants

Constitutiye relations first need to be developed for individual lamina under plane

stress, as assumed. Additionally, the lamina stiffnesses are restricted to those for

an orthotropic lamina.
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2.3.1 Constitutive Relations

The thermoelastic stress-strain relationship for an orthotropic material is given by

' O"1 '

if2

if3

0"4

o"5

, 0"6 ,

} ,--- ellc12c13ooilC12 C22 C23 0 0
C13 C23 C33 0 0

0 0 0 C44 0

0 0 0 0 Cs5

0 0 0 0 0 C66 J

e_ - a2AT

/

e3 - as AT

$4

$5

_6

(2.3.1)

These are the lamina stresses given in terms of the strains and the independent

material constants [C] for any ply in its own principal material directions [136].

Using the above equation, the stress-strain relations for a lamina under plane

stress, result in a reduced stiffness matrix, Qij. Rewriting the constitutive relation

therefore, we obtain

0 o o
6 . = 0 Q66 0 0

4 I 0 0 Q44 0

s I 0 0 0 Q55

¢1 - al AT }
' C6

g5

(2.3.2)

where in terms of the engineering constants,

E1

Qll -
1 - V12Y21

Vl UE2
012

1 - //12/221

022
1 -- v12v21

V21 E1

1 - VI2V21

and 044 -- G23, Q55 - G31,066 - G12, remain unchanged.

For a_laminate of many plies, each having its material axes oriented differently

with respect to the laminate axes, the constitutive relations must be transformed

from the principal material directions, 1,2 and 6, to the global coordinates x, y, z of

the laminate (Fig.2). Upon transformation, the transformed reduced stiffnesses for

a given layer are

[(_] = [T] -1 [Q] [T] -T

2O

u

J

i

m
u

I

elm

l

J

I

w

Imw

w

U

g



===

w

= =

w

w

t_

where

IT] -T -- JR] [T] [R] -1

with [R] being the Reuter's matrix as defined by Jones [136]. Transforming the ther-

mal strain tensor from the principal material directions to the laminate coordinates

= avAT = [T] T o2AT

o_AT 0

as follows

We are now ready to compute the stress resultants with

_ Iq_ 0,22 0,26 0 0 e_- a_AT

,_, = /Q_6 6 6 o 0 ")'_, - a_,AT (2.3.3)

for the k th layer of the laminate. The expression for strain can be substituted from

Eqs.(2.2.6) in Eq.(2.3.3) and the final form of the constitutive relations for the k th

layer is given by

m w o _ e_7 a'_,_ = Q,_(_; + z_, + _, + _, ) + _ (2.3.4)
k -k w

with i,j,m,n as defined in section 2.2. Implicit is the condition that the plate

is strain-free under w,,(x, y) and a_. The additional stress term a_ relates to the

specified initial stress distribution, as had been stated in the problem definition.

Henceforth all the stresses denoted with index subscripts are in laminate coor-

dinates, x, y, z.

u

H
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2.3.2 Force and Moment Resultants

Having written down the expressions for stresses in any ply, the various resultant

forces and moments that are to be used in formulating the governing equations of

motion for the laminate are to be defined. These are in units of force or moment

per unit length, as stresses are integrated over the thickness only. The resultant

forces, Ni and Q,,, and the resultant moments, M, are

= a_dz = a_dz i = 1,2,6 (2.3.6)
Ni J-h�2 = k-I

I h/2 dz _zk= ai z = a_ z dz (2.3.7)
Mi J-h/2

k=l k-I

and

{) i {) {I'Qs = h/2 IC2 a5 dz = _ IC_ as dz (2.3.8)
Q4 J-h/2 o'4 o-4k=l k-I

where 1,2, 6, 5, 4 now correspond to x, y, xy, xz, yz directions respectively, and K:2

is a constant shear correction factor. Integration over the thickness is carried out

by summing up the integrations over L layers. The distance from the midplane of

the plate to the bottom of the k ta layer is zk-1, with zo = -h/2.

Substituting for stresses from Eqs.(2.3.4-5) into Eqs.(2.3.6-8) above, the stress

resultants interms of laminate stiffnesses are as follows.

Ni = Aij ( e7 + e7

M, = B,j( +

and the shear force resultants

Qm = K:2Am.7.,

+ e_) + B,j_ i - Nf T + N._ (2.3.9)

+ e;) + D,itz i - M_ T + M_ (2.3.10)

m;n = 5,4 (2.3.11)
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where

k--'l h-I

L

k=l

are the laminate extensional stiff.nesses,

L _zzk _BO = _ Qo z dz
k=l k-x

k=l

axe the laminate bending-stretching coupling stiffnesses,

L

= _ _,_(_
k=l

are the laminate bending stiffnesses,

_fz_D 0 = Oij z 2 dz
k=l k-1

is the thermal force resultant, and

i;j = 1,2,6

I

= =

I

m

U

I

m
I

=._
m

I

L _k

M,_ = Z f O,,_,?%)dz
k=l h-1

is the thermal moment resultant. Am,,, the laminate shear stiffnesses, are defined

identical to extensional stiffnesses, Aij.

2.4 Harriilton's Principle

The governing equations for the problem are derived based on Hamilton's Varia-

tional Principle, modified by a weighting function, W(t), to be used for numerical

integration in the time-domain. This can be mathematically expressed as

( )W(t) T - U - V + D dt = 0 (2.4.1)
1
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where

T - Kinetic energy of plate

U - Strain energy of plate

V = Potential due to external loads on the plate

D = Dissipative energy of plate; and

tl and t2 imply initial and final time of the time domain. Each of these expressions

will be derived in the following sections. The dissipated energy is due to structural

damping, which is assumed directly proportional to the inertia of the plate.

2.4.1 Kinetic Energy

The kinetic energy of the plate in terms of the three velocity components can be

written as

fv I 0 2 I) 2 W 2 )dV (2.4.2)T = _p( + +

where p is the density of the plate and U, V and W are the displacements as defined

in Eqs(2.2.1). A dot over the variables indicates differentiation with respect to time.

On substituting from Eqs.(2.2.1) for the overall displacements and carrying out the

variation operation, we obtain

_T/h/2/h
= p[(_ + z¢.)(_ +

¢-_/2

+ (tb &b)] dhdz

z,6.) + (_ + z¢_)(,_ + **¢_)

(2.4.3)

Note that wo does not contribute since it is constant in time. All the dependent

variables in the integrand are independent of z. The following inertias can hence

be defined

hi2........ (I1, Io,, I3) = p(l, z,zU)dz
J-h/2
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As p is uniform for the laminate, I2 = 0. Next, the kinetic energy term of Eq.(2.4.2)

is integrated by parts with respect to time using the boundary conditions

to obtain

i I,; L= - Is,
Ji2

,W),, = ,_(v-),_= o

,_(v),, = ,_(v),, = o

,_(w),, = ,_(w),, = o

fi6u + I_6v + I,(b6w + I3¢_¢= + I3¢yS¢_]dAdt

Note that with Is not assumed zero rotatory inertia is included as stated in the

assumptions. Upon substituting for displacements and rotations from Eqs.(2.2.2),

in terms of nodal degrees of freedom and shape functions, the variation of kinetic

energy can be written as

£ £6 Tdt = - M,j fit _a_ dt i;j = 1, 2,..., Ndl (2.4.4)

where Ndl includes the total number of global degrees of freedom for the system

and Mq is the mass matrix of the finite element model for the whole plate as given

in Appendix B. It is understood that the area integration over the plate is actually

the summation of element integrations, or assembly of finite element matrices, over

all the elements in the finite element model.

The dissipative energy, D, is now represented in a similar way, as

/t2 _tt=D dt = - Cq itj Jai dt (2.4.5)
Jtl 1

where C_ i is proportional to Mq.

2.4.2 External Work

This term comprises the work done on the plate by the applied dynamic transverse

load. If p (t) is the random dynamic pressure on the plate, then

6V = f -p(t)6(w + wo) dA
JA
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Carrying out the variation and substituting for w from Eq.(2.2.2), the work done

term in Hamilton's principle, Eq.(2.4.1) can be described as

_ Vdt = - Pi(t)_a_ dt i;j = 1,2,...,Ndl (2.4.6)
1

where Pi is the load vector [see Appendix B]. The details of simulating this random

load time-history are to be described in Chapter 4.

2.4.3 Strain Energy

The strain energy in a plate whose material shows linear Hookean behavior can be

written in terms of its stresses and strains as

U = _ aieidV, i = 1,2,...,6 (2.4.7)

Using the constitutive relation for ai (Eq.2.3.3) and carrying out the variation, we

have

m

w

=

m

= fv [O,j_,,_, + O,,,o-_.,_.y.,]av

= /A[N'g(e_' + e_' + e_) + M, 8_i + Qm&y,,,]dA (2.4.8)

where i takes on values 1, 2 and 6, and m takes on values 5 and 4.

Substituting for the stress resultants Ni, Mi, Qm from Eqs.(2.3.9-11) and for

the strains from Eqs.(2.2.6) the expression for the variation of strain energy now

becomes

+ [Bq(e 7 + e7 + e;) + D,j_cj - Mf 'T + M:]8_¢,
%.

+ pc_A,,,,,(_¢. + _y ),_(._ + ._ ) dA
)
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" w _ q_ w w w )
A "¢'6 ''_ + A,,,.',[,.,$%,, + Am."t._"[,,,, + A,,.,._.$"r,-,,) dA (2.4.10)+ K:2( ,,,,,,, ,,,

where i,j range over 1,2,6 and m,n each take on values 5,4. The strain energy

components that are functions of tw, are underlined so as to easily distinguish the

geometrically nonlinear terms among all the above. Naturally, the one expression

symmetric in t" forms the cubic nonlinear tensor in the a_ nodal displacements.

The rest of the terms that depend on t '_ are quadratic functions of a".

The next step is to expand all the strains in terms of nodal displacements

and the corresponding shape function matrices as in Eqs.(2.2.7-12). Once again the

integration over the complete area of the plate is actually carried out by summing up

the integrands of every element integration over the number of elements in the finite

element model. The details of every element stiffness matrix and tensor generated

as coefficients of nodal displacements are described in Appendix B.

2.5 Equations of Motion

With the various energy quantities for Hamilton's Principle now ready, they can

be put together as follows to obtain the system governing differential equations of

motion. Eq.(2.4.1) becomes

/[2 { - I'lij )aj + Klijkajak
w(t) Mqaj + coa_ + (Ki.i + K.',1 .AT

"t

+ K2ijtlaiakat -- Pi(t) + P_ - p_T_ ,_a_dt = 0 (2.5.1)
J

where
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Mij, Cij are global mass and damping matrices;

Kij is the global linear stiffness matrix (including wo terms);

K_j is the global stiffness matrix due to Na;

Ki_ T is the global stiffness matrix due to AT;

Klijk is the global quadratic nonlinear tensor;

K2ijkl is the global cubic nonlinear tensor;

Pi(t) is the global random load vector;

P/_ is the global constant vector due to N s (including Wo terms); and

Pi_T is the global constant vector due to AT (including Wo terms).

All the above matrices and tensors are of order Nay. All of them, including those

derived from the terms in Eq.(2.4.10), are detailed in Appendix B. All, including

the two nonlinear tensors, are constants independent of displacements. The system

is now ready for the imposition of kinematic boundary conditions.

The computational cost in satisfying a weighted average of the above multi-

degree-of-freedom system Over small time intervals until final time, t2, will be as-

tronomical. In order to circumvent this difficulty, the displacement vector, ai, is

represented in terms of a series expansion that is then suitably truncated. An ap-

propriate choice for this truncated series approximation, is a linear combination in

the mode-shapes of free vibration for the plate.

The global system mass and linear stiffness matrices are used upon imposition

of boundary conditions. The mode-shapes required are obtained from the solution

to

M, jaj + Kijaj 0 :;3 = 1,2,.. ,Ndl- Nb_ (2.5.2)

where Nbc is the number of kinematic boundary conditions. This is the governing

equation for undamped free vibration of the same structural system represented in
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Eq.(2.5.1).

form

The solution, aj, to this system of equations is assumed to have the

ai(t) = a,e i=

Substituting this expression in Eq.(2.5.2), results in an eigenvalue system

m
u

m

i

n

I

[Kii - w 2Mii]ai = 0 (2.5.3)

that gives an array of eigenvalues, w 2, which correspond to the natural frequencies

of vibration for this system. However the amplitudes of vibration, aj are indetermi-

nate. Information regarding the shape of the response is still obtained by assigning

one of the amplitudes as a fixed value, usually, unity. A scaled nondimensionalized

expression of this amplitude vector for each eigenvalue is nothing but the eigenvec-

for, also the mode-shape of the response at that eigenfrequency. By determining

the mode-shape at each eigenfrequency, a square matrix consisting of all the mode-

shapes can be written as follows

g

Ill

m

mm

I

= [{¢,} ... {¢r} ... ]

where {¢r} is the mode-shape corresponding to the r th frequency of vibration and

is directly proportional to a_. The degrees of freedom eliminated while impos-

ing boundary conditions are now reinserted to make the number of rows in each

eigenvector Naf. By doing this the boundary conditions are accounted for when

transforming the system in Eqs.(2.5.1).

The matrix [¢] is called the modal transformation matrix for the Naf × Ndl

system. This modal transformation matrix now can be used to form the series

expansion for a i as mentioned before, i.e.;

g

m

m
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aj = Cjlql(t) + Cj2q2(t) + ... + Cjrqr(t) +
W
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where the modal or normal coordinate, qr, gives the amplitude information at the r th

mode of vibration. These are the new unknowns to solve for in order to determine

aj.

The truncation, is in using a combination of a few of these modes, say, 3 to

6 (much less than Ndl), to approximate all the Nd! components of aj. Physically,

such an approximation would be consistent with the nature of vibration response

of a structure. The dynamic response of a system to any kind of excitation is

largely concentrated in the neighborhood of the first few natural frequencies of the

system. Even when the random white noise excitation extends to high frequency

regions, most of the energy in the response is distributed within the lower frequency

range. Further, if it is known beforehand that there will be no response at particular

natural frequencies due to the characteristics of the excitation, that corresponding

modal coordinate may be dropped from the series approximation. In effect, the

transformation to modal space lets one tailor the displacement assumption to suit

the application. The exact considerations involved in choosing the appropriate

modes to represent the system accurately will be discussed in Chapter 4 under

implementation.

Thus, let's say R mode-shapes are used to express

Then '

and

aj = ej, q,(t), j = 1,...,N_f; r = 1,...,R; R << N_! (2.5.4)

a; = q (t) (2.5.5)
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To obtain the reduced modal equations, the above transformations are substi-

tuted for the displacement, velocity and acceleration in Eq.(2.5.1), such that

s AT
(Kit + Kit- Kit )at = (Kit + K_.i - Ki_ T ) cht, q,-,

Klitt ata_ = KlitkdPt,-d_k,q,'q* , and

K2itkt ataka: = K2i.ikidt,-_k,qbu q,-q, qt

(2.5.7)

(2.5.8)

(2.5.9)

(2.5.10)

(2.5.11)

I

Jtm

d
m

J

where r, s,t now range from 1,..., R. In addition, to reduce the matrices in their

i coordinate (which still goes from 1,... ,N dl), the whole equation in Eq.(2.5.1) is

premultiplied by the transpose of [q_]. If Chip is used to denote the transpose (index

i must be used this way, to be consistent with the index in all the system matrices),

then Eq.(2.5.1), upon substitution of Eqs. (2.5.7-11) and multiplication, becomes

,J t _l

-- K ij ) ¢b.i,"fibip ] q,+ [(zcii + z¢5 .,,r

+ [KlitkdP.i"dptsdPip ] q,'q,

+ [ K2i.i_tc_.i,-6tsc_lt6 q, ] q,-qsqt

-}- Pi(t)4,i, + P{4,i, - P_r4i, dt - 0 (2.5.12)

It must be clarified that unlike in the case of the familiar matrix notation it is

not required for _bip to be placed before the matrices it 'premultiplies'. All that is

essential in the index notation is for the index assignments to be consistent so that

the right elements of two matrices multiply each other.
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Therefore, the final form of Eq.(2.5.1) transformed, and thereby reduced, from

the global system physical degrees of freedom to the new modal degrees of freedom-

can be now written as

],2 {w(t) m,,4, + + (k,, + k;,
1

+ klp,-,q_qs + k2prstqrq, qt - Pp(t) + p_

where p,r,s,t range from 1,...,R.

- kp_T)q,.

-- pp dt = 0 (2.5.13)

The matrices my,- , %,-, kpr, ..., etc. are the modal equivalents of the global

system matrices as shown in Eq.(2.5.12) above. In actual implementation the modal

transformations are not done at the global level. There is no possibility of storing an

Naf x Ndl × Ndf x Nd! cubic tensor on most machines and neither is it efficient. Instead,

transformations are carried out at a much smaller element individual degrees-of-

freedom-level. Details of the implementation process will be discussed in Chapter

4.

This is the set of equations that will be integrated from initial to final time.

The solution vector qr(t) obtained is then used to approximate the displacement

vector, aj, as in Eq.(2.5.4).
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Chapter 3 _ J

NUMERICAL INTEGRATION

The integration technique used to march forward in time is described here. A

single step algorithm, as put forth by Zienkiewicz et al. [114], has been adapted to

generate a system of nonlinear algebraic equations that are solved iteratively within

each time-step. The salient features of this procedure are detailed in the following

sections. _

m

m!

Ill

3.1 Single Step Algorithm

Within a single time-step, say, between time t. and t.+l, the modal coordinate, q,

is expressed as a polynomial series of degree p, in r, as follows

m

p-1 dm,.,n Or(riP) 7"P
q(r)- _ dr _ + _.v (3.1.1)

rn--O

with

t.+l = t. + At and 0<r<At

u

w

Or, on expansion,

T20ln(p) TP
q(r) -- q, + ?l,r + ?l,-_v + ... + p! (3.1.2) _

rail

the dot denoting differentiation with respect to time. This series expression for q(r)

is exact.
U
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For a second order system of differential equations, with initial displacement

and velocity being the natural initial conditions, a cubic degree polynomial is

the lowest applicable. Any polynomial of higher degree requires initial conditions

for higher derivatives of q(r) and does not have unconditional stability charac-

teristics even for a linear system. So, when degree of polynomial in Eq.(3.1.2),

p-- 3,

T 2 T 3

q,,+l = q. + cl.r + 4._.. + Ctn(3)-6

7-2
(3) m

4.+1 = _. + 4. r + a.
2

qn+l = qn "4- an(3) r (3.1.3)

When r = At, this becomes

qn+l

qn+l

= q. + ilnAt + 4.--

= _1,, + _ (3)At___33
fi

(3) At2
= q. + 4. At + or.

2

: At 2
= qn + _(3)_

2

qn+l -- q- "3L (3tn (3) At

At 2 At 3
-_- Otn (3)

2! 6

(3.1.4)

which can be generalized as

{q}n+x = {Cl}n + {C_}n

where the right-hand sides above consist of a known function from the previous time-

step, {El}n, analogous to a 'predictor', and the unknown {a}n, the 'corrector'. This

corrector, with the only unknown, a,, (3), is determined by a weighted satisfaction

of the modal system of equations, Eqs.(2.5.13), over every time-step. The weighting

function, W, is defined such that
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f =
0

At

f
0

= or"atr" (3.1.5)

where Or" are free parameters chosen based on stability criteria. These parameters

can correspond to any of the various numerical integration algorithms such as the

Houbolt algorithm, the Bossack-Newmark algorithm, the Wilson-8 algorithm, etc.

In this work the Or. values were chosen based on the Wilson-0 integration algorithm

[I37]. For a second order linear system, the cubic algorithm (p = 3) needs three free

parameters, 81, 02, 83, which for Wilson's algorithm, take on the following values

01 = OW

02 = OW 2

03 = Ow 3, OW >_ 1.366 (3.1.6)

where 8w corresponds to the Wilson-8 parameter. The convenient fashion in which

the three free parameters above are defined in terms of the Wilson-0 parameter is

the reason this algorithm was chosen over the others. This is particularly useful for

the nonlinear system we have, where the quadratic and cubic terms in q(t) when

expressed in terms of Eqs.(3.1.3), will result in more than three free parameters

(see Appendix C). Thus for the nonlinear system of equations, the definitions in

Eqs.(3.1.6) are extended as follows

Or, = 6wr", m = 1,2,...,3p and 00 = 1 (3.1.7)

In our case 3p is 9.

The only other function of time in the weighted integral equation (2.5.13) is the

dynamic load, p(t), which needs to be interpolated appropriately within the time
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interval, At. It is reasonable to approximate that it varies linearly between t,, and

t,+l to give

p.(t) "" 01p(t,+l) + (1- 61)p(t,) (3.1.8)

The system of modal equations in Eqs.(2.5.13) is now rewritten with Eqs.(3.1.3)

substituted for the unknown modal coordinates, q(t). The resulting expression and

its integration is detailed in Appendix C. As shown in Appendix C, after integration.

has been carried out, the quantity a_ ) is replaced by a new variable defined as

d. = (3.1.9)

This has been done for the sake of implementation. For a random dynamic problem,

a (_), analogous to the rate of change of acceleration, is a very large quantity and

At is usually a small quantity. By solving for dn we are dealing with quantities

on the order of displacements and are directly obtaining the increments in modal

displacement, q( t ).

Thus the numerical integration algorithm used herein results in a set of coupled

nonlinear algebraic equations in d as given below.

A2ijkzdjdkdt + Aliikdjdk + Aijdj + AOi -- ¢zi(d) = 0 (3.1.10)

where

A2ijki - arises out of the cubic modal tensor, k2ijki

Alijk - arises out of quadratic functions of dj in k2iikt and the quadratic modal

tensor, klijk

Aij - arises out of linear functions of dj in k2ijkt and klijk; the linear modal

stiffness matrices, ki), k_j, AT.kij , and the mass and damping matrices, M O and Cij

AOi - arises out of all the constant terms from all the above tensors and matrices

that are functions of solutions from the previous time-step, {_}, as well as from the

modal load vectors at the current time-step,/3i(t), pZ_t and p[.
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3.2 Iteration Procedure .....

The solution procedure for the nonlinear equations obtained above can be chosen to

suit the degree of nonlinearity of the problem. When a system is weakly nonlinear it

may be sufficient to solve a linearized set of equations at every time-step, using the

solution from the previous time-step. In this work, however, nonlinear equations are

retained, so as not to restrict the scope of this formulation to problems with small

nonlinearities. Accordingly, the well-known Newton-Raphson iterative scheme has

been utilized within each time-step.

If it is required that Eqs. (3.1.10) be satisfied at the (p + 1) th iteration, then we

can write

_p4-1i (d) - 0

which can be expanded as a Taylor's series about _i from the pth iteration as follows

_mJ

I

z
m

u

m

m

i

W

, (d) =@f(d) + _ Adr + ... - 0 (3.2.1)

By truncating this series to second-order errors, the above is rewritten as

W

u

i.e.,

= - (d)

where

d_ +1 =d_ + Ad_

and Ki T is the tangent stiffness matriz.

(3.2.2)

(3.2.3)

=_

i

i

z

W

N

i
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It is obtained by substitution of Eqs.(3.1.10) and differentiation (as in Appendix

B). i.e.,

O [ d_d k + AijdjOd_ A2iikld_dVkd_ + Alijt v v v + A0i(q) ] AdV_

= {[A2i_kt + A2it_k + A2ikt_]d[d_

+ [Ali_k + Alik,-] d_ + Ai,- } Ad_ (3.2.4)

The corresponding right-hand side vector, -_, is computed using dV_ and the

new :system of equations in Eqs.(3.2.2) is iteratively solved for AdV_. The value of

dV_+1 is now updated using Eqs.(3.2.3). The iterations are carried out until a certain

convergence level is met. Convergence is said to have been achieved when the error

between solutions of two successive iterations is within some predetermined bound.

The error norm chosen here is the maximum norm. i.e.,

max [ d_l - d_d_+l ] _< err (3.2.5)

where err is a sufficiently small positive number.

The startup of the iterations needs a suitable guess value, which in this case

can either- be zero (giving the linear solution at every time-step) or the modal

displacement from the previous time-step, _,,.
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Chapter 4 u

IMPLEMENTATION AND SOLUTION PROCEDURE

The previous two chapters have described how the plate vibration problem

has been modelled. In order to proceed with solutions to specific problems various

preparatory computations need to be carried out. These include solving eigensys-

terns to determine the fundamental frequency, the modal transformation matrix as

well as the critical buckling temperature all of which are subsequently required.

Apart from these, time-histories of random gaussian acoustic pressure distributions

at different decibel levels need to be generated. Furthermore, post-processing of the

resultant displacement and strain time-histories requires computat!on of the power

spectra, the probability distributions and also the various statistical parameters

such as mean, variance and other higher order moments. This chapter deals with

these above-mentioned aspects and certain implementational considerations that

need to be highlighted. The load generation details will be discussed first.

4.1 Random Load Generat|on

Since we are dealing with a random stationary process, a Monte Carlo simulation

is used to generate the random pressure time-history. A Monte Carlo simulation

evaluates the required function at a number of sample points all lying within some

domain of interest. These values are then used to represent a close approximation

m

m

m

w
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of the actual function itself. The error in the estimate of the function is greatly

dependent on the number of samples used.

The pressure time-history is a filtered normal distribution whose sound pressure

level ($PL) is suitably scaled. A uniform random array of numbers is first created.

This uniform array is then transformed to a normal distribution of numbers with

zero mean and variance unity. The method used is the KR algorithm as given by

Kinderman and Ramage [138].

4.1.1 Filtered Random Process

The array of normally distributed numbers, Y, is passed through a recursive linear

filter. The filtering process is based on the bilinear transformation method [139].

This technique maps the frequencies, f, into a new variable, w, using the equation

w =_ tan[re(/&t)] (4.1.1)

where At is the sampling interval or time-step. This results in a frequency response

function for the filter as follows

[H(/)12 = w 2 -4- a 2 w2 + b2 (4.1.2)

where w is as defined in Eq.(4.1.1), and a and b are the values of w corresponding

to the lower cut-off frequency, ft, and the upper cut-off frequency, f_, respectively.

The filtered process can be represented as

m lrl

X, = 2 cl, Y.-k + 2d' X._j (4.1.4)

k=0 j=l

where there are rn + 1 coefficients ck and n coefficients dj that are constant for the

filter and define the relationship between the broadband input, Yk and the filtered
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output X,. These constants are determined using the poles of Eq.(4.1.2) that result

in a stable H(f). They are

(1+ ,0(1+ b)

g

m

Cl -- 0
U

b

c2 = (l+a)(l+b)

d 1
(l+a)(1-b) + (1-a)(l+b)

(I + a)(1% b)

d2 = (1 -a)(1 -b) (4.1.5)
(1 +a)(1 + b)

With these constants and the input array, Y, we can generate the output

filtered, band-limited process, X, using Eq.(4.1.4). This filter as such does not

produce sharp cut-offs. The filtering process can be repeated until the desired

drop-off is achieved.

The filtered process, X, now needs to be scaled to a gaussian pressure time-

history. In order to do this the root mean square value of the pressure distribution,

P,ms, needs to be computed.

decibels, dB_is SPL, then

If the level of the acoustic pressure, supplied in

2 ._2 ,nsPC/lo (4.1.6)Pay = tlref _v

is the magnitude of the power spectrum levels for the broadband gaussian acoustic

pressure distribution, in psi2/hz. It is a constant through the frequency spectrum.

The reference pressure level is Prd- The expression for p,-,n, is therefore given by

(" 12,,I _22 (4.1.7)Prm, = [H(I) P.v df
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where nf is the number of filters used. The limits ft and f,, are as defined before.

When nf is 1, the expression reduces to the familiar mean-square relationship be-

tween any input and output process. As mentioned earlier, the filtering process

needs to be repeated in order to produce a more 'ideal' band-limited output which

has a steep drop-off at f,. This repetition is equivalent to applying the magnitude of

the frequency response function, [H(I)I 2, nf number of times. Hence the equation

for mean-square of the output process is as given in Eq.(4.1.7) above.

The pressure time-history vector is thus obtained by

p -- PrmsX + p (4.1.8)

where p is the bias or mean, if any. The notation p stands for an array of acoustic

pressure values. It represents

p = {p(t,) p(t ) ... p(tN)}r = ... pN}r

which is the expression for pressure used in deriving Eq.(2.4.6). The subscript N

here denotes the final time-step in the time-marching scheme.

4.1.2 Normal Random Load

The random pressure time-history is now ready. The load on the plate must now

be computed. This load is modelled in two ways. The simpler of the two, due to

waves along the z-axis, perpendicular to the surface of the plate, is treated as being

due to uniform pressure over the whole surface area at any given time. This model

will be dealt with first.

The global load vector corresponding to unit pressure, {F}, is defined in Eq.(2),

Appendix B. It will be used here as F,, where subscript i ranges over the global

r_
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degreeof freedom numbers. As shown in the same equation, Eq.(2), the final form

of the global load vector is given by

P./"(t) = pn(t) Fi, i--- 1,2,...,Ndl, and n = 1,2,...,N (4.1.9)

It must be made clear that N_! is the total number of degrees of freedom in the

global system and N is the total number of time-steps. This is the load vector,

Pi(t), used in Eq.(2.5.1). It is obtained simply by scaling Fi by the pr,_, value from

the vector p for the corresponding time-step.

The entire formulation so far has been based on this load model. At a particular

time-step, a single Prm, value is used over the whole plate. But if the waves were

incident at an angle to the plate, say tangential to the surface, then this would no

longer be an accurate model.

4.1.3 Space-Time Correlation

A pressure field at an angle to the plate is treated as a series of plane waves incident

on the plate at a certain angle,/3, as shown in Fig.3. It is assumed that the waves

travel from left to right over the plate. Therefore the spatial direction of interest is

along the z-axis only. The pressure distribution along the y-direction is restricted

to being uniform.

The above plane wave acoustic pressure field satisfies the one-dimensional wave

equation. The d'Alembert solution to the wave equation results in an expression

for the pressure, p, at any point as follows (outgoing wave term only)

(4.1.10)
C

where s is the distance measured along wave direction; c is the speed of sound in

air.
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In terms of the plate coordinate z, this becomes

2:sin5
p = p(t ) (4.1.11)

C

This expression essentially correlates pressure values along the x-axis with time.

The time-lag in travelling a distance 2: is given by 2:sinfl/c. In other words, the

magnitude of pressure at the 'leading edge' is the same as the magnitude at a

distance x from the leading edge after a time interval xsin_/c.

Thus in order to create the global correlated pressure vector over the surface

of the plate, we first define a global array, gk, as follows

gk = integer [xk sin_/c] j, k = 1,2,...,NN (4.1.12)

where NN is the number of nodes in the mesh (Nay = 5NN). This array contains

the integer values of the time-lag in multiples of the time-step, At. For example,

let

gk={0 0 1 2 2

correspond to global nodal 2:-coordinate values

3 4 ...}r

:/7k -_ 2:1, 2:2, X3, 2:4, 2:5, 2:6, ... , 2:1 ---_ 0.0

In this instance, node 3 at a distance x3 from node 1 has a corresponding g3 value

of 1. This implies that the time-lag in a wave travelling from node 1 to node 3 is

approximately equal to At. Similarly, a wave reaches node 4 after a time span of
=

2At seconds.

With this array, gk, defined, the load vector at the n th time-step can now be

determined. Using the same notation as in section 4.1.2, it can be written as

p?(t) = p,_g,(t) F,, i = 1,2,...,Nal, k = 1,2,...,NN (4.1.13)
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with P--gk = 0 for all n -g_ < 0 (negative subscripts).

Note that the subscript i represents the global degree of freedom number

whereas k stands for the global node number. It is understood that gk values

remain unchanged for all the five degrees of freedom at one particular node. Again

the example from above is used to explain Eq.(4.1.13). For the degrees of freedom

corresponding to the first four nodes, whose x-coordinates are xl, x2, x3, x4, and gk

values are 0,0,1,2 respectively, the final form of Pi at the n th time-step is

P1
P2
P3

Ps

Pls
P1,
/20

0

0

p.F3
0

0

0

0

p.F8

0

0

0

0

p,,-1F13

0

0

0

0

p,-2Fls
0

0

The elements of P, and F, are grouped as 5 degrees of freedom per node, with the

entries corresponding to the a w degree of freedom being the only non-zero entries.

i.e.,F w_0,andF _ = F _ = F ¢_ = F¢_ =0.

Thus, Eq.(4.1.13) gives the expression for the correlated random load vector•

Had the angle of incidence,/3, been zero, implying normal incidence, all gk values

would have been zero, resulting in Eq.(4.1.9) for Pi(t).
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4.2 Implementation

As mentioned earlier, the preparatory computations that need to be carried out in-

clude the determination of the modal transformation matrix and the corresponding

eigenvalues. The appropriate 'modes' or eigenvectors are extracted from this matrix

to represent the relevant degrees of freedom in the response of the plate system.

It is extremely important that care be exercised in choosing the appropriate

modes to represent the structural response adequately. There are particularly sig-

nificant factors which influence the choice of mode-shapes during implementation.

Important considerations are the damping, spacing between modes and the fre-

quency range of interest. Also to be included are the properties of the plate, the

type of dynamic loading and the nature of the stiffness matrix, IN]. The last will

be discussed in detail in the following sub-sections.

The geometry of the plate and the boundary conditions on its edges affect the

frequency content in the vibration response of the plate. There are two planes of

symmetry of concern, namely, the z - z and y - z planes. If the plate were to be a

simple rectangular symmetric laminate with symmetric boundary conditions, then

it is symmetric about both these planes. Its response to a normal random load

would be restricted to modes that are symmetric in z and y-coordinates. In the case

of a load that is correlated along the z-coordinate as described in section 4.1.3, the

only plane of symmetry is the z - z plane even for a fully symmetric plate. This

still permits the use of a half-plate model, and correspondingly, mode-shapes that

are symmetric in the y-coordinate. For the case of a plate that has no plane of

symmetry as in the case of mixed boundary conditions or non-rectangular plates,

no assumptions in choosing mode-shapes can be made. All the predominant lower

modes may need to be included.
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4.2.1 Uncoupled Linear Stiffness Matrix

In Eq. (30) of Appendix B, the element linear stiffness matrix, [K_], is a fully loaded

matrix only if bending-extension coupling, arising due to matrix Bij in the laminate

stiffnesses, and initial imperfection, wo(x, y), are non-zero. In the case both are zero,

[g =
k"" 0 0

0 ks ''_ ks w'l'

0 ks ¢'' k ¢¢ + ks _¢

where the membrane displacement sub-matrix, [km"_], is completely independent

of the other sub-matrices that correspond to bending and curvature. In this case

when solving Eq.(2.5.2)

Mij5j + K_jaj = 0, i;j = 1,2,...,Ndf- Nbc

at the global level, to obtain the transformation matrix, [¢], the eigenvectors cor-

responding to inplane displacements, {am}, will be independent of those corre-

sponding to bending and curvature, {a_}, {a¢}. Thus it is important that {a 'n } be

represented by an adequate number of its eigenvectors in the truncated series for

aj, Eq.(2.5.4).

In effect, for the case of an uncoupled stiffness matrix, Eq.(2.5.2) splits to two

smaller systems as follows

and

[M "n]{_i"} + [K mm]{a "_} = 0 (4.2.1)

r.,<:,,,- ]{<:,,-}M¢,_ , /i¢ + [Ks_,_ K¢,¢ , + Ks,/,¢ a¢ = 0 (4.2.2)

The global sub-matrices used in this equation are used as direct assembled exten-

sions of the element sub-matrices defined in Appendix B. Solutions of these two
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eigenvalue systems result in expressions for the nodal degrees of freedom as given

below

{a'} = [,I,'] {q"} (4.2.3)

a" } __ [(I)(W¢,)] {q(W,/,)} (4.2.4)a ¢

where [_m] is the modal matrix for the membrane system, Eq.(4.2.1), and {q"} are

the corresponding membrane modal coordinates. Similarly, [q)(w¢)] is the modal

matrix for the bending system (a _, a ¢) and {q(W¢)} its modal coordinates. The

equations above imply that the following series expressions "can each be truncated

to represent the membrane and bending degrees of freedom, respectively.

J

m

J

U

m

{am} = {¢"'},q? + {¢"}2qT + {¢"}3q_ + ...

........ and • _

a ¢ ---

These two equations when put together in matrix form result in

o o {¢('_)},

which is the same as

{a} = [{¢}, {¢}_ {¢}3 {¢h {q'}

(4.2.5)
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The length of each mode-shape vector, {¢}, is NaI - Nb_. They are brought back

up to length Na! by inserting the kinematic boundary conditions at the appropri-

ate degrees of freedom. Then the transformation is similar in form to Eq.(2.5.4)

repeated here for reference

aj = Cj_q_(t), j = 1,2,...,Nal, r = 1,2,...,R; R<<Naf

The actual number of modes used, R, is decided based on convergence studies

for both the menbrane and bending modes, done separately. The minimum number

of membrane modes required for each problem is determined based on the con-

vergence of solutions with increasing number Of modes. Once that is fixed, those

bending modes over which a significant response level is observed are retained and

the rest discarded. This is again done by checking the convergence of solutions.

For plates with stiffness matrices as discussed above (symmetric laminates),

there are associated buckling problems. A buckling eigenvalue problem is solved to

determine the critical buckling temperatures using the equation

where a nominal value of AT is used to compute K_ T. The critical buckling

temperature is determined by scaling the AT value used, with the lowest eigenvalue.

These buckling temperatures are used to evaluate the response of a plate under

thermal and acoustic loads around these critical values.

4.2.2 Coupled Linear Stiffness Matrix

In the case of a laminate Wig;h: non-zero bending:extension coupling ( B O _ 0)

and/or with a prescribed initial imperfection, wo(x, y), the element linear stiffness

matrix, [K_], has the form

[K '] =

k ,_ ,. k ,n O k ,n ¢

k °" k °° + ks'' k °_" + ks w_

k om k ¢o + ks g'w k¢¢ + ks Ctp
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as given in Appendix B. The sub-matrices in the membrane positions, [k''°] and

[k°"*] arise due to Wo(Z,y), and [k me] and [k ¢'''] arise due to Bij. Either way, the

membrane components in [K "] are no longer independent of the bending compo-

nents. In this case, therefore, the complete coupled system given in Eq.(2.5.2) is

= [{¢},{oh (¢},{6h ...]o
a _O

solved to give

(4.2.7)

which is in the same form as Eq.(2.5.4). The required number of modes are used

based modal convergence studies of solutions to the random vibrationagain .... on

problem.

4.2.3 Assembly of Modal Matrices : ': :

Once the required modal transformation matrix is ready, all the matrices and tensors

in the random vibration problem need to be reduced to their modal equivalents. As

stated at the end of chapter 2, it is physically impossible to assemble Klij_ or

K2,jtd to the global nodal degrees of freedom level. In fact it is impractical even at

the element assembly level to store, say, Kli_k, as a 45 × 45 x 45 tensor. Therefore,

at the programming stage, the modal matrices and tensors are all prepared at the

element sub-matriz level. For instance, [k2WW], a 9 x 9 × 9 x 9 tensor for the a _

degree of freedom is transformed to its modal counterpart as follows

and, likewise

[k2_]m0d.,

[klm_],-0a_' = [¢,,']r[kl_W] [¢w'][¢,,'1 (4.2.8)
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where [¢_'] and [¢m'] contain the element modal transformation matrix components

for the a w and am degrees of freedom, respectively. All the other element sub-

matrices defined in Appendix B, are transformed to their modal equivalents in a

similar fashion. Once all the stiffness, mass and thermal matrices and tensors are

in modal form, they are then assembled at element level. Since they are no longer

coefficients of 'nodal' degrees of freedom, the 'assembly' is simply a straight forward

summation. The same procedure follows when summing up modal contributions

from every element to give the 'global' modal matrices and tensors.

The advantage in using modal transformations is evident right here. All the

way from the sub-matrices level we are dealing with arrays whose maximum size is

set by the number of modal coordinates used. This smaller system is going to be

integrated forward in time. The variables of interest, including strains and stresses,

can be written out at any instant of time desired.

Assembly of Load Vector

As described in section 4.1.3 of this chapter, the exception to the above trans-

formation and assembly procedure, is the formation of the correlated load vector.

In order to account for the space-time correlation, the global array assembled from

all elements, Fi, is still in 'nodal coordinates', calculated for unit pressure per unit

area. This vector is then prepared for each time-step using the method described.

Then, a modal transformation is carried out at every tlme-step.

4.2.4 Step-Size Considerations

One of th_ important aspects of numerical simulations is the time-step size or sam-

pling interval, At. It is required that At be small enough to capture the response

up to the upper frequency cut-off, f_. This cut-off frequency or Nyquist frequency is

the "highest frequency that can be reproduced from data sampled at equal intervals

z

m
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At" [140]. Therefore, in order to avoid aliasing (where two disparate frequencies

become indistinguishable), a sampling interval of

1 (4.2.1)
< 2T

must be used.

A good estimate of the fc value to be used can be obtained from the natural

frequencies of the plate. It is generally known that the major response of a vibrating

system falls within about its first six modes of vibration (six symmetric modes in

case of a symmetric system). If the sixth natural frequency is known, then an

f, value greater than this can be used. The sampling interval can be determined

accordingly. The load spectrum also is set to span all these frequencies.

A greater constraint on the step-size for numerical integration is its stability.

Although there are no guarantees for a nonlinear system, an adequately small value

has to be used. This usually results in a sampling interval smaller than that needed

to accommodate the Nyquist frequency. A point to mention in this context refers

to some work on stability of nonlinear systems. There are some proofs for stabil-

ity of nonlinear structural dynamics b_ed on the principle of energy conservation

[141,142].

One more note regarding the step-size refers to the membrane plate responses.

The inplani;deg;eesof freedomfor a thin plate are typicallyactive at very high

frequencies..A At value that captures such high frequencies (at modes that couple

in case of a nonlinear problem) will have to be extremely small. This results in

a computationally enormous task. Since the response at this range is negligibly

small, it is not critical if the vibrations at these frequencies are ignored. All we

really need, again for a nonlinear problem, is the effect of membrane coupling on

the lower bending modes. Hence, the step-size required is computed based on the

significant bending modes only.
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A change of variable brought about by implementation considerations is the

replacement of a_ ) by d, in the expressions for acceleration, velocity and displace-

ment at any time-step, see Eqs.(3.1.4). Here,

6

As mentioned earlier, a_ ) is usually very large and At 3 is very small. This change

of variable avoids the possibility of errors induced by computations involving such

large number of significant digits in both these quantities.

4.3 Postprocessing

The large number of samples that form the time-history data sets for each output

variable in the solution need to be processed to extract meaningful information re-

garding plate response characteristics. Each of the parameters used will be discussed

below.

The power spectrum estimate, P(f), is based on the description in [139].

For a data set, cj(t), of N samples, the FFT using a 'Parzen window' function, is

N-1

Ck = E cjwje 2'tijk/N , k = 0,...,N - 1 (4.3.1)

j=O

wj

where

J '(_ 1)
'(N + 1)

is the window function. The power spectrum estimate, therefore, is

where

(4.3.2)

1 N 1) (4.3.3)v(s_)= _ (ic_l_ + ic___l_), k = _,2,...,(_

N

2
W = NZw.i

j=O

(4.3.4)
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Frequencies fk are defined only for zero and positive frequencies as

k N

h -- NAt ' k = 0,1,...,-_- (4.3.5)

m

w

The power spectrum is finally obtained by averaging together K estimates at

M frequency values between 0 and ft. The number of segments in the data set, K

is defined as N/4M. It is desired that N and M be in powers of 2,

The statistical properties are next computed. The parameters used are the

mean, p, standard deviation, a ( root mean square when the mean is close to zero),

skewness, s, and kurtosis, k [139]. The mean for a data set, cj (t), of length N, is

given by
z

N

1 (4.3.6)

j=l

Similarly, the moments are as follows

and

E (cj
j=l

1/2

N a
j=l

1 cj - p - 3.0

j=l

The kurtosis moment ratio is usually 3 for an ideal gaussian process.

(4.3.7)

(4.3.8)

(4.3.9)

Thus for a

normal distribution the value of kurtosis is zero. A negative kurtosis implies a wide

distribution shaped like a loaf of bread and a positive value relates to a sharply

peaked distribution. A broad sense of the degree of nonlinearity in the response

data can be obtained by observing how far this value is from zero.
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The mean is for the most part close to zero, although it may be significant in

the cases where thermal and acoustic loading are combined. The value of _r from

the above equation is checked against the root mean square value obtained from

the power spectrum estimate. They should be close.

The peak probability distributions for the responses will be presented in a

few cases. The probability densities of all the positive peaks in the response time-

histories are computed. A peak is treated as a value of magnitude greater than its

preceding and succeeding values. This may not be an accurate measure of the peak

probability, say, when snap-through motion occurs. The number of sample points

per 'cycle' in the time-history must not be too sparse.

Apart from these, a few figures showing the probability distribution functions,
T

PDF, are presented. The PDF shows the density of distribution of random samples

about their mean. Again, this is a graphical check of the skewness - the deviation

from the classic 'bell' shaped distribution - in case of nonlinear responses. A plot

of the load PDF will be displayed for reference.
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Chapter 5

RESULTS AND DISCUSSION
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II

Numerical results are presented for numerous cases to illustrate the problem

analysis and formulation discussed in earlier chapters. The random load model

to be used is first described. The accuracy of the present formulation is verified

by comparisons against existing solutions. Mesh and modal convergence studies

are first presented for an unsymmetric cross-ply laminate. Most of the numerical

examples that follow are for a symmetric laminate. The modal analysis for this

laminate is detailed before random response results are presented. A modal conver-

gence study under random load is carried out for this baseline laminate. Variation

of responses under increasing load levels is tabulated. Temperature distributions

considered include a simple uniform temperature assumption and a complete gener-

alized non-constant distribution. Responses under uniform normal loading, as well

as grazing-wave loading are then compared. Additional data to display the effects

of other parameters, such as, plate thickness, initial stress, etc, are presented.

5.1 Random Load

The random pressure time-history generated has a frequency response function as

given by Eq.(4.1.2). In this study, the sampling interval is set at At = 10-4s and,

thus, fc = 5000 hz. The Nyquist frequency, fc, easily includes the lower natural

frequencies. Furthermore, the sampling interval, or the time-step size, is small

enough to maintain low amplitude decay and period elongation. The number of
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time-steps or samples obtained is set to N = 2 is = 32768. The pressure spectrum

has a bandwidth up to f,, which is chosen to be 4900hz, and ft = 1/Nkxt =

0.30517 hz, is the lower cut-off frequency. The value of f, was set at 4900hz to cover

the whole range of responses possible. A single filter was found to be sufficient. The

spectrum of the resulting pressure time-history at 130db sound pressure level (SPL)

is given in Fig.4. Its probability density histogram is shown in Fig.5.

w

w

5.2 Verification of Formulation

The finite element formulation presented in this study is first evaluated for accuracy

using previously published results. The various intermediate stages in developing

the program, were checked using simple free vibration and static nonlinear bending

results. Linear forced vibration solutions (deterministic) were compared against

solutions obtained from exact formulas. This helped verify the numerical integration

algorithm. The final verification step is the only one detailed here, involving linear

and nonlinear random vibration responses.

5.2.1 Normal Random Load at AT = 0

Comparisons of results from the present formulation are made against those from

Ref.[89] and Ref.[105]. Mei and Prasad, in Ref.[89], compute, using an analytical

Galerkin single-mode approach and the equivalent linearization technique, random

response solutions for square simply-supported symmetric cross-ply laminates of

various length-to-thickness (a/h) ratios. Results with and without transverse shear

effects have been listed. The classical formulation of the governing equations uses

the Airy stress function, thereby neglecting membrane inertia terms. All com-

parisons made here are for transverse shear deformable behavior. The material

properties for the graphite-epoxy laminate used here are as follows
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E_ = 0.75 x 106 psi

EI/E_ = 40

G_3/E2 = 0.5

G12/E2 - Gla/E2 = 0.6

v12 = 0.25

p = 2.4 x 10 -41b- s2/in. 4

a = 12in., a/h = 200

damping ratio, _' = 1%, with modal damping, ci = 2¢wi.

A shear correction factor of K; = 1 is used, to coincide with.the unit 'tracing

constant' used in Ref.[89]. The boundary conditions used are for a plate simply-

supported on all sides, with immovable inplane boundary conditions as shown in

Fig. 6. Since the plate is symmetric, consisting of cross-ply layers only, a 4 × 4

quarter-plate model is used. The analysis leading to the mesh size used here is

detailed in section 5.3.1. The fundamental frequency obtained is at 69.992 hz, which

exactly matches the frequency corresponding to the nondimensionalized parameter

_o = 18.88 given in Ref.[89].

The nonlinear simulation to be done requires the use of membrane mode-shapes.

Of the lowest few membrane modes, the first mode was found to be inactive, i.e.,

its presence made no difference to the deflection rms values. Therefore, the next

3 membrane modes axe used. As seen in results below, sufficient agreement in the

deflection results is obtained with these three membrane modes. Thus, simulation

is performed with a total number of modes R = 4, with 1 bending mode and 3

membrane modes.

Numerical values are compared at 130db SPL, for #, a nondimensional root-

mean-square (rms) deflection parameter for the maximum deflection at the center

of the plate, given by
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10 aE2h 3
=

a4_

where a is used to represent the standard deviation for maximum deflection, (same

as rms since the mean is negligible), fl denotes the fundamental frequency, and

PSD stands for the magnitude of the power spectral density (psi2/hz) for 130db

SPL (see [89]). Using a reference pressure level value

p,._l = 2 × lO-S Pa = 2.9 × lO-g psi

we have,

PSD = p,._12 10 SPL/l° = 8.425 × lO-Spsi_/hz

The results for linear and nonlinear responses are given in Table 1. A graphical

representation of responses at various load levels is shown in Fig.7. As shown in

the table, the difference from Ref.[89] is within 4%.
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linear nonlinear

aef.[89] present Ref.[89] present

a (in.) 0.3955 0.3800 0.0955 0.0917

0.4024 0.3860 0.0972 0.0933

a/h 6.592 6.333 1.592 1.53

Difference - 3.8% - 3.7%

lip

I

Table 1. Cross-Ply Laminate Rms Deflection II

There seems to be very good agreement between the results in both Table 1 as

well as Fig.7. Some of the factors in the computation procedure that differ between

the two methods need to be highlighted. The Lagrangian quadratic element used

in this study, is known to converge to the exact deflection from below (frequency

from above). The numerical integration algorithm as well as the Newton-Raphson
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iteration technique are known to produce conservative results. However, this influ-

ence is rather small for a system with moderate nonlinearity (note that a/h _ 1.6).

These are, however, factors that could predict lower values than a classical equiva-

lent linearization method. A point to mention is the level of membrane contribution

for this case. The ratio of membrane modal rms values to the fundamental mode

rms value were in the order of 10 -3.

At this stage, the numerical simulation formulation has been verified for non-

linear deflection responses. This confirms the accuracy of the formulation in the

absence of thermal loads. A numerical comparison of strain data is presented next.

A verification for the strain values was made against data from Ref.[105]. In

Locke's study, a thermally buckled isotropic plate under a symmetric acoustic load

is analyzed using a post-buckling formulation in conjunction with the equivalent

linearization method. The membrane stiffnesses were eliminated by static reduc-

tion. A quarter-plate finite element model with 36 24-degree-of-freedom rectangular

elements was used. The results for simply-supported boundary conditions with im-

movable edges, as in Fig.6, are used here. The properties of the plate are (with a

shear correction factor included for the present formulation)

E = 10.5 × 106psi

v=0.3

p = 2.588 x 10 -a Ib- s2/in. 4

axbxh = 15x 12x0.04 (in.)

._ = 1%

]C = lr2/12

fl = 44.078hz

Single-mode finite element results were compared with classical solutions by

Locke in Ref.[105]. Verification here is for a plate with no thermal load. The
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finite element model used here again has a quarter-plate 4 x 4 mesh. The numerical

simulation used the lowest few membrane modes, of which the first mode is relatively

weak; its influence on the deflection results being negligible. The next 2 membrane

mocles were used along with one bending mode. i.e.,

R = 3 ; 1 bending mode and 2 membrane modes.

The single-mode nonlinear random responses at 95db and 125db SPLs are

compared below in Table 2. The maximum strain is in the y-direction and its rms

value is denoted by et,,s, given in micro-strain units, 10 -s in./in. The rms and

standard deviation for strain are not identical, since the mean is no longer small.

7
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classical [105]

FEM [105]

present

Difference

95db 125db

alh e,-.,. (Pc) "1 h e,',,,,0

0.391 22.41 2.771 362.95

2.766 366.49

2.6925 301.82

2.8% 16.8%

0.390 22.58

0.380 21.42

2.77% 4.4%
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=_

m
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Table 2. Rms Deflections and Strains for Isotropic Plate

The difference above has been computed against the equivalent linearization

classical solutions given in the first row of the table. The rms deflection values

agree very well and so does the strain at 95db. The difference in strain values at

the highet load has possible cause in a few factors. The differences in the membrane

formulations between the two methods is a possible factor, since membrane action is

stronger at high load levels. The interpolation functions and the finite element mesh

used also influence the displacement derivatives. The displacement and rotation

interpolations in this study are C ° continuous, resulting in their derivatives being
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discontinuous across element boundaries. In Ref.[105], the bending displacement

function has C 1 continuity. The strain computations are, therefore, likely to be more

accurate. The inplane displacement functions used are C ° continuous. But the same

interpolations are again used to calculate the strains and curvatures, making these

continuous. The figures posted here for strains are actually the maximum elemental

strain values, at the centroid of the element and not at a particular node. In effect,

an average over an element is being compared with the maximum occurring at one

of its nodes.
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5.2.2 Normal Random Load with Constant AT

The verification for this case is done against the thermal post-buckling solutions

of Ref.[105]. Equivalent linearization results for single-mode rms deflection and

strain responses are generated at multiple s of the critical buckling temperatures.

The present simulation results are compared against these, at the critical buckling

temperature, z_Tcr.

The lowest non-zero eigenvalue of the buckling eigenvalue problem corresponds

to ATcr, scaled by the AT value used to build up the thermal stiffness matrix,

KzXT (see Eq.4.2.6). The value of ATcr, using the same material properties and

boundary conditions listed in section 5.2.1, was found to be ATc_ = 0.9 ° F. Again,

a single bending mode is used with two membrane modes in the simulation. Using

a uniform temperature distribution at AT = ATc_ and a 95db acoustic load, the

rms values obtained are listed in Table 3 below. Comparisons were made at a lower

decibel load, since the effect of thermal loading is more pronounced than at higher

levels.

There seems to be reasonably good agreement given the differences between the

two methods of formulation discussed earlier. A major difference between the two

formulations that affect combined loading results, is in the post-buckling solution
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used by Ref.[105] for both the classical and finite element methods. The static

deflection shape obtained from the thermal loading problem is used as an initial

deflection in the random vibration problem. The membrane action is accounted for

by this static mode, making the model stiffer than a multiple-mode-assumption. In

the case of the simulation, the thermal and acoustic loading occur simultaneously,

which amounts to the thermal 10ad als o being treated as part of a dynamic problem.

This is an important difference as it results in higher buckling eigenvalues being

involved in the response. Their effect will be studied later.

,,/h

Classical Ref.[105] 0.497 29.22

FEM Ref.[105] 0.496 29.42

Present 0.4965 26.0

difference 0.1% 11%

U

[]

L_

[]
L_
w

Table 3. Rms Deflections and Strains for Combined Load

5.3 Numerical Examples

" The following sections present responses for various acoustic and thermal load cases

for a specified baseline plate model. A mesh and modal convergence analysis is first

performed on an unsymmetric laminate. The baseline plate used is a symmetric

laminate.- Results are presented for response under varying decibel levels. Fur-

ther simulation for various temperature distributions, the grazing incidence acoustic

load, etc., is performed at a baseline load level of 130db SPL.
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5.3.1 Mesh Convergence

Different mesh sizes are tested to represent a full-plate model of an unsymmetric

laminate. The changes in the natural frequencies, nonlinear random deflections and

strains are observed. An unsymmetric laminate is used, since separate membrane

modes are not necessary when Bij # 0 (see section 4.2.2). The unsymmetric lam-

inate used is a two-layer cross-ply graphite-epoxy panel of a (0/90) lay-up. The

plate is assumed fully clamped on all edges with immovable inplane displacements,

i.e.,

u = v = w = _bx = _by = 0, on all 4 edges

The material properties for the laminate are

E1 = 22.5 x 106 psi

E2 = 1.17 x 106 psi

G23 = 0.66x 106 psi

G12 = Glz = 0.4x 106psi -

v12 = 0.22

p = 1.458 x 10 -41b- s2/in. 4

axb = 15x12(in.)

h = 2 x 0.024(in.) = 0.048(in.)

= 2_, ci = 2(wi

L2 = lr2/12

Free-vibration eigenvalues and eigenvectors are obtained for three different

mesh sizes. The mesh sizes used are a 6 x 6, 8 x 8 and 10 x 10 grid of rectangular

45-degree-of-freedom elements over the full plate. The number of mode-shapes re-

quired to obtain converged nonlinear rms maximum deflection and rms maximum

strain values were determined using the 8 x 8 mesh model. The details of this modal

convergence study will follow in section 5.3.2. A total of seven modes (R = 7) is
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I

used for nonlinear random simulation at 130db SPL for all the three mesh models.

The highest of these modes is mode (4,1). Table 4 below shows results for three

parameters, namely, the frequency for mode (4,1), the center deflection, a, and the

maximum strain (y-axis), er,,,,. The strain values are, as mentioned before, given

at the element centroid. They represent an averaged value over the area of the ele-

ment. With a changing mesh, the location of the element where strain is maximum

changes. Results from the 10 x 10 mesh are used as a basis for comparison of results

from the smaller meshes. This mesh was selected as a reference mesh, based on

linear random response convergence studies by Robinson [143].

D

mesh size mode (4,1) a er,.,,s

6 x 6 4.4% 3.8% 14.3%

8 x 8 0.7% -0.8% -10.2%

m

w

=

m

t_

=_

L_"

|:=7.

m

Table 4. Mesh Convergence for (0/90) Plate

The minus signs above indicate that the values were lower than the 10 x 10 mesh

values. As can be seen, mesh convergence for the nonlinear quantities, deflection

and strain, is not monotonic. Robinson [143] shows monotonic mesh convergence in

linear random deflection response. Locke [144] conducted mesh convergence studies

for thermal post-buckling nonlinear deflections and stresses for a clamped isotropic

plate. All these converged monotonically. The added change in the present case is

the modal transformation combined with nonlinear random simulation. Therefore,

the possible factor in the present convergence behavior is the modal cross-correlation

in the transformed equations of motion.

The 6 x 6 mesh shows a fair amount of difference even in the natural frequency

results. Therefore, this mesh will not accurately model the required mode-shapes.
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The 8 x 8 mesh shows excellent comparison with regard to both the frequency and

the nonlinear deflection. This indicates that there is adequate resolution in the

modelling of the required mode-shapes. The strain value shows poorer convergence

behavior, but the difference is still in the 10% range. Amongst the various stresses

due to thermal loading studied by Locke [144], the membrane stress at the edge

midpoint showed the poorest convergence behavior. Given adequate resolution in

modal representation, the strain values can be expected to vary with element sizes,

as they represent averages over progressively smaller areas.

Th 10 x 10 mesh size, resulting in 1805 degrees-of-freedom, is a large problem

for the eigenvector computation method that was used here. In this regard it is

preferable to use the 8 x 8 mesh. The difference in strain data between the two is

within a reasonable range. Hence, for the most part, the 8 x 8 mesh is chosen in

the following examples.

5.3.2 Modal Analysis

The modal analysis leading to the random results in the above section is detailed

here. The same analysis for the symmetric laminate to be used is also presented

in this section. This symmetric laminate has no coupling between bending and

membrane mode-shapes and, therefore, will involve modal convergence studies for

both the membrane and bending mode-shapes.

Modal convergence for the unsymmetric (0/90) laminate is carried out using the

8 x 8 mesh on the full clamped plate. The lowest ten mode-shapes in ascending order

of their natural frequencies, are as follows: (1,1), (2,1), (1,2), (2,2), (3,1), (3,2), (1,3),

(2,3), (4,1), and (4,2). Their frequencies ranged from 75.5 hz for the fundamental

frequency to 421.6 hz for the tenth natural frequency. Random response simulations

are run at 130db SPL, with increasing number of modes included. The modal

rms values are computed along with rms maximum deflection, at the center, and
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maximum strain, along y-axis. The element corresponding to the maximum strain

is, for this mesh and load, not at the long edge midpoint. It was found to be one

element away from the edge. This can be expected, since the maximum strain for

a elamped plate is 'close' to the edge. A refined mesh picks this maximum value

at an element away from the edge. Further discussion on this follows under section

5.3.3.

Figure 8 shows the modal convergence curves for deflection and strain for this

case. Of all the lower modes listed above, no response was detected at modes (1,2)

and (2,2), the third and fourth modes, respectively. The modal time-histories at

these two modes showed rms values below 10 -12. Further, including or excluding

them did not affect the deflection and strain responses. The deflection as well as

strain data show reasonable convergence within the first four active modes itself. A

more confident estimate of converged values is with seven modes, as there is modal

activity, albeit weak, at modes beyond these.

The converged rms maximum deflection and strain values for this case are

a/h = 1.737 and e_m_ = 377.3_.

Baseline Plate

The modal convergence studies for the baseline plate are discussed next. The prop-

erties of the plate are the same as those listed in section 5.3.1. Its symmetric lay-up

consists of eight layers, each 0.006in. thick, in a (0/+ 45/- 45/90), configuration.

All other parameters, including the total thickness, remain the same. The plate is

assumed t;ully clamped. Two finite element meshes axe generated for this plate, the

8 x 8 mesh and a smaller 8 x 4 mesh. This smaller mesh has been chosen with the

grazing load model in mind. Since the pressure-wave is assumed uniform along the

y-axis, the number of elements along this direction is reduced. In all the results to

w

m
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follow, the mesh and modal model used is specified for each case.

Free vibration eigenvalue problems were solved for both these meshes. An

inspection of the bending modes indicated the presence of some 'skewness' in their

shapes, despite the symmetric lay-up of the laminate. For instance, the fundamental

(1,1) mode was found to be not perfectly symmetric. Neither are the anti-symmetric

modes perfectly anti-symmetric. The (2,2) mode deviates from the classic single sine

function curve as we approach the centerline of the plate. This can be observed in

the figures for the first four modes plotted in Figs.9 and 10. An observation of

the centerline for these mode-shapes [except mode (1,1)] shows the deviation from

expected conventional shapes seen in isotropic or orthotropic laminates.

This type of skewness should be expected since the baseline laminate has angle-

ply layers at -t-45 °. These angle-ply layers result in non-zero values for D16, D26

and their transpose positions (the twist-bending coupling terms) in the laminate

bending stiffness matrix, Di.i (Eqs.2.3.9-11). Although the A16, A26 positions of

the extensional stiffness matrix are also non-zero, they are maximum for a three-

layer angle-ply laminate and drop-off sharply as the number of layers increase. In

keeping with this property, the A16, A26 values were found to be negligible. A

check of the membrane mode-shapes showed an absence of skewnesss, as there is no

extension-twist coupling. The drop-offin the stiffness values with increasing number

of layers is not so steep for the twist-bending couplingterms. They vary as L2/L 3

for an L-layered laminate. The influence of this twist coupling on the skewness of

the mode-shapes can be illustrated by redoing the eigenvalue analysis for the same

laminate with D16, D26 and its transposes set to zero. Fig.10 shows the (2,2) mode

with and without twist coupling. The skewness has evidently vanished. Due to the

presence of this skewness, all the lowest bending modes [(1,1), (1,2), (2,1), (2,2),

(1,3), (3,1), ...] up until the twelfth natural frequency are saved for convergence
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studies. As the mode-shapes get more complicated [(3,3), (2,4), etc.], it is difficult

to accurately label them so. Strictly speaking, it is rather erroneous to assign, say

the mode (3,3), as done here, since the skewness seriously distorts its shape over

the plate. The membrane mode-shapes are combinations of similar shapes for the

z and v-direction displacements, u and v, respectively. For example, the lowest

mode to be used here has shape (1,2) in z-direction and (2,1) in the v-direction.

Convergence of nonlinear random deflection and strain responses are now done.

In the interest of accuracy, all data presented are for the 8 x 8 elements mesh.

Bending as well as membrane modes need to be picked. The modal convergence

for number of membrane modes required is done using one bending mode, namely

the first mode (1,1). A total of twelve membrane mode-shapes were saved ranging

in frequency from 10207hz to 22336hz. (It must be clarified here that, it is not

the response solutions at these frequencies that are of interest, but the effect of

these modes on the bending mode responses. This effect is represented in the

modal equations through the nonlinear bending-membrane coupling tensor, klpro

(Eqs.2.5.13). Furthermore, the level of modal response at these frequencies is far

smaller than those at the bending mode frequencies. This is why the excitation

spectrum is not extended up to these high frequencies.) The highest mode amongst

these has shapes (2,3) and (1,2) in the u and v displacements, respectively. Of

these twelve membrane modes, six were found to be inactive, i.el, their modal rms

values were zero and the deflection and strain results remained unaffected by their

exclusion. Convergence results are with increasing number of active modes included.

Values for rms maximum deflection per unit thickness (o/h), and maximum

strain (emo), at 130db SPL for increasing number of membrane modes are plotted

in Fig.11. The maximum strain was found to be along the y-direction. The strain

values are specified in micro-strain units. With the 8 x 8 mesh chosen, the element

showing maximum y-axis strain at this load level is not at the long-edge mid-point,
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but at the next element towards the plate center, one row away from the edge. The

sixth mode in the figure, where solutions have converged, in fact corresponds to the

twelfth membrane natural frequency.

Bending mode convergence is studied next using linear and nonlinear simu-

lations at 130db SPL. Nonlinear simulations use six membrane modes from the

convergence shown above. Results for linear and nonlinear center deflection and

y-axis strain are presented in Fig.12. As in the case of membrane modes, not all the

lowest bending modes are active. The mode-shapes that were found to be active

correspond to (1,1), (2,2), (1,3), (3,1), (3,3) and (2,4). Their natural frequencies

are 102.3, 300.12, 338.45, 417.4, 594.0 and 652.9hz, respectively. In the case of the

linear simulation, as seen in the figure, even single-mode solutions are fairly close

to converged four-mode results. The convergence in the nonlinear simulation is not

monotonic for both the deflection and strain curves. This is due to the presence of

coupling between modes. This does indicate that the practice of neglecting cross-

correlation terms in the modal equations, as done in most earlier analytical work,

may lead to erroneous inferences on plate responses.

The converged rms values for a/h and er,,s are 6.4 and 628.0 _u_, respectively

in the linear case, and 1.86 and 438.5/ze, respectively for the nonlinear simulation.

Thus, the nonlinear solutions for the baseline plate at 130db SPL can be said to

have converged with six membrane and six bending modes (R - 12). The various

cases a_nalyzed in the succeeding sections, use this set of modes for the 8 x 8 mesh.

Since the center deflection value shows better convergence characteristics both in

mesh size and number of modes than strain, the smaller 8 x 4 mesh with fewer modes

has been used where only deflection data are presented. This smaller baseline plate

model uses just two membrane modes based on the membrane convergence in Fig. 11

and four bending modes based on the bending convergence in Fig.12.
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5.3.3 Load Variation

The next set of results displays the changing qualitative characteristics of panel

responses under increasing sound pressure levels. The decibel levels used ranged

from 90db SPL, where the deflections can be expected to remain within the linear

regime of panel response, to 130db SPL, where as seen previously large deflections

have set in (a/h _ 2). All the load levels had spectra similar to that in Fig.4.

The pressure rms value obtained by integrating the frequency response function is

simply scaled to suit the required SPL. The simulations were carried out with the

8 x 8 mesh plate model.

The variation of deflection response with SPL is shown in Fig. 13. The hard-

ening type nonlinearity is seen in the reduced nonlinear deflection values at higher

loads. Data using the smaller baseline mesh defined earlier is also Plotted in this fig-

ure. This gives a good estimate of the accuracy of a coarser mesh and fewer modes

(R = 6), in predicting nonlinear deflection values. As can be seen the smaller mesh

is fairly adequate as far as deflection values concerned. All other data in this section

pertain to the 8 x 8 mesh model.

The effect of increasing load, and thereby, increasing nonlinearity, can also be

seen in the power spectra for the center deflection shown in Fig. 14. The spectrum

for 90db SPL load shows distinct peaks corresponding to the (1,1), (3,1) (1,3) and

(3,3) modes, respectively. The mode (2,2) which does show up in the modal rms

values, here is. a very small peak. The mode-shape in Fig.10 for this mode has a very

small magnitude at the plate center. The spectra at loads ll0db abd 130db show the

hardening type nonlinearity, in the shift in their response peaks. There is significant

broadening in these peaks, another indicator of nonlinear random response.

Table 5 shows the various statistics for rms maximum deflection at varying

load levels. The standard deviation and rms coincide since mean deflection is zero.

m

m

w

W

==.

W

m

I

Li
mtw

El
I

82

Imam

Imm



w

m

I 1 i i 1 I I

o

o

'1:1

o

rd_

o
o

®

e..4

-,4
r..4

m

0

r_

0

.io
u

q-I

I-4

L

i

83



_a

s_

I i

i !

i i

i i

i i

[(zq/_uT)5Ol] (_)0

0
0
0

"2

I.I
@

114

.,'4

0
o

0
.,'4

.IJ
U

,-4

_D C_

!.4 _1
0

O g,4
0

U

O
0

0

0 ,-4

.,.4

R

m

U

W

g

I

_mm

m

n

w

_m

m
J

84 m

W



The skewness and kurtosis, denoted by s and k, are non-dimensional quantities

listed in columns 3 and 4.

SPL (db) a/h s k

90 0.0638 0.0558 0.614

I00 0.1969 -0.004 0.32

ii0 0.524 -0.0026 -0.743

120 1.147 -0.008 -0.668

130 1.86 0.0152 -0.796

Table 5. Maximum Deflection Statistics vs Sound Pressure Level

For practical purposes the skewness values are very small and indicate a rea-

sonably symmetric probability density distribution about the mean. Graphical il-

lustrations of the probability density function (PDF) for the nonlinear deflection

response at 90db and 130db load levels are displayed in Figs.15 and 16. The PDF

of the linear response at I30db is shown in Fig.17 for comparison. As can be seen

from these figures, the PDF is pretty symmetric about zero. A good indication of

the increasingly high density of large magnitude responses is the trend in the kur-

tosis values. As mentioned in Chapter 4, a negative kurtosis indicates a 'bread-loaf'

shape of the PDF and a positive kurtosis implies a narrower distribution peaking

towards the center. The kurtosis numbers in Table 5 do reiterate the behavior seen

in the figures. This nonlinearity as indicated by the kurtosis value at 130db is again

reaffirmed in the peak probability density function for the large deflection response

shown in Fig. 18. Only positive peaks in the deflection time-history have been con-

sidered. A plot of the same for the linear deflection at 130db SPL is also shown in

Fig.19. A comparison of the two shows a marked shift in the peaks towards higher
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magnitudes in the nonlinear case. The Rayleigh dlstribution of the linear response

peak density has also widened considerably.

:_The behavior of the normal strains in the plate with increasing load levels

is next analyzed in a similar fashion. However, in this case, a breakdown of the

various components in the maximum strain is presented. This clearly displays the
=

changing quantities in the total strain with large deflection behavior setting in.

The maximum strain was found to be in the y-direction (the shorter dimension),

with x-direction strain reasonably weU-behaved throughout. Therefore, the focus

is on the maximum y-direction strain, %. The maximum is computed at thickness,

z = hi2. Unlike in the case of maximum deflection, which is at the center of the

plate, the location of the maximum strain shifts with increasing load, for the 8 x 8

finite element mesh considered. The maximum strain is close to the mid-side of the

long edge for all the load cases, since this is a clamped plate.

The power spectra at different loads for this strain are displayed in Fig.20.

As in the case of deflection, the shift as well as widening in the response peaks is

present here, too. The strain response at 130db SPL has almost reached a uniform

broadband behavior, across the frequency spectrum. The power spectrum for strain

at:90db generated using the smaller 8 x 4 mesh with a total of six modes, as

mentioned before, has been included to draw attention to one important observation.

A comparison of the 90db strain response spectra for this mesh with that for the

8 x 8 data shows a difference in the peak magnitudes. The higher magnitude for

the second peak in the smaller mesh data indicates a greater contribution to strain

at this mode. This indicates that this coarse mesh is too stiff to accurately predict

strain contribution from this (1,3) mode.

Table 6 lists rms value of all the components of rms y-strain, e,-ms- e", the

linear membrane normal strain vector; ex, the linear strain vector corresponding
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r

to curvature _¢i; and ew, the nonlinear strain vector due to large deflection (see Eqs.

2.2.6-10). The mean value of ey, denoted by e_,, is also included. All units are in

micro-strains, pc. The skewness and kurtosis values are not presented for strain.

They follow the trend in the deflection statistics but tend to be more extreme. All

the statistics for the curvature component were found to be indicative of a zero-mean

gaussian process at all loads.

At lower decibel levels, the dominant component in the total strain is the

linear strain due to curvature, e_. This is maximum at the edge. As the load

level increases, the nonlinear strain component, e '_, begins to gain magnitude. This

component is highest a little away from the edge of the plate. This can be expected,

since, right at the clamped edge, membrane extension is constrained. Therefore, at

120db and 130db levels, the element for which the strain reached a maximum has

m K

SPL e_, erm $ erm $ errn$ errna

90 0.2285 6.248 0.035 6.245 0.4324

100 2.21 19.54 0.477 19.09 4.35

110 17.65 55.53 " 3.42 49.21 27.91

120 97.6 182.4 4.5 105.6 151.7

130 254.8 438.5 15.8 217.95 389.4

* all in micro-strains

" Table 6. Rms Strain Components vs Sound Pressure Level

moved one row towards the interior of the plate.

The PDF distributions for this y-axis strain at 90db and 130db load levels are

shown in Figs.21 and 22. The skewness in the strain at 130db is clearly noticeable.

The peak PDF (positive peaks only) for 130db nonlinear strain response is given in

Fig.23. Again, for comparison the linear peak PDF is displayed in Fig.24.
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g

As can be observed in the PDF figures, the increase in skewness is not accompanied

by a strong deviation from a gaussian distribution. There is a slight move towards

a Rayleigh distribution type shape in the nonlinear strain PDF. The wider distri-

bution of strain in the nonlinear PDF is reflected in the peak density distribution

of Fig.23. The broader range of peak magnitudes in the nonlinear peak PDF is

concentrated in a smaller range in the linear response peak distribution of Fig.24.

Further, there is a shift towards higher magnitudes in the nonlinear peak distri-

bution. This shift is not as pronounced as in the case of deflection (Fig.18). The

'random' characteristics of nonlinear strain response are, for the most part still de-

termined by its linearly-behaving curvature component. The nonlinear membrane

action contributes to the strain primarily as a mean value increase.

5.3.4 Variation of Temperature

The changing responses under increasing temperature loads are now analyzed. The

baseline plate is used with load at 130db SPL. The smaller 8 × 4 mesh is used here,

since the results presented are for deflection behavior only. The total number of

modes used to approximate the deflection is R = 6, as described before in section

5.3.2. The comparison in Fig. 13 has shown that the center deflection rms values are

reasonably accurate even with this model. The lowest few buckling temperatures

were determined for this baseline plate configuration using Eq.4.2.6. The values

obtained are

ATc,-_ = 37 °F

AT_= = 49 ° F

AT_. = 83 ° F

g
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Simulation results are generated at increasing levels of AT, ranging from 0 °

to 80°F. A total of 15 different temperatures are considered, keeping in mind the

buckling values above. These results combine both the dynamic random response as

98
rm
l

m



L.J

E

m

l--

--i

well as the thermal response. The variation of rms deflection (a) with temperature

is shown in Fig.25. Strain results, although not presented here, did follow the same

pattern of behavior. The peaks in the deflection response, denoted as AT1, AT_ and

AT3, approximately correspond to the above three buckling temperatures. When

the same simulations were done with a single bending mode, the peaks more closely

matched the buckling temperatures. These peaks are indicators of reduced modal

(vibration modes) stiffnesses, at those temperatures. As the temperature passes

the buckling value, the response increases and then decreases as the panel stiffness

starts increasing again. These peaks are results for a system that includes the

nonlinear stiffnesses, the inertia and damping terms. Therefore, it can be expected

that the temperature values at which they occur do not exactly match the buckling

eigenvalues given above.

This multiple peak characteristic of response under combined loading is not

identified with a thermal post-buckling analysis. The buckled plate is modelled by

the equivalent of its critical buckling temperature mode-shape. This eliminates the

singularities that occur in the [K - K AT] system at higher eigenvalues.

Snap-Through Motion

At temperatures much higher than those used above, snap-through motion in the

large-amplitude deflection has been reported ([109], [125], [134]). A simulation

at 130db SPL with temperature increased to AT = 350°F, did result in such a

deflection response. The baseline plate model has six modes in an 8 × 4 mesh.

The time-history for maximum deflection, W,na_(t), at snap-through is dis-

played in Fig.26. A very short segment of about 0.1 sec, out of a sample of over

3 sec, has been extracted. The 'oil-canning' phenomenon, where vibration occurs

about some non-zero amplitude for short bursts of time is clearly visible. The

parallel segment for nonlinear time-history at AT = 0°F, is shown in Fig.27 for a
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comparison. A linear simulation time-history at the same load and with no temper-

ature is shown in Fig.28. This figure shows a much slower moving curve since the

response is dominated by low frequency oscillations. A comparison of the former

two with Fig.28, gives an idea of the large high frequency content in the nonlinear

response.

The power spectrum for the snap-through response is,in fact, very similar to

the 130db response spectrum with no thermal load (Fig.14), except for some very

low frequency content. This isclueto the snap-through oscillation being picked up

as a very slow-moving mode.

Uniform Temperature at Different Loads

The response data for nonlinear deflection at 130db load under uniform tempera-

ture, does not deviate much from the zero temperature response values at the same

random load. Earlier research has stated that thermal loading effects are dominant

at lower random load levels [83]' This aspect of plate behavior is now studied.

Two load levels are used - 130db and 90db SPL. Random response time-

histories at these loads with AT = 80°F are generated. For the sake of better

accuracy in strains, the larger model of twelve modes (R = 12) in the 8 × 8 mesh is

used to generate data. Table 7 below lists rms deflection and strain values for both

these load cases, at AT = 0 ° and 80 ° F. The statistics include the non-dimensional

mean and rms deflection values and the mean and rms values for the maximum y-

axis strain, %, and its curvature component, e_. This component has been included

to show its reaction to thermal load.

The maximum strain location is different for these two load cases. In the case

of 130db, it is in the element close to mid-point of the long-edge one row away from

the edge. In the 90db case, maximum is at the element on the edge itself.
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130db 90db

OOF 80OF OOF 80oF

p wm,=/h -0.007 -0.01 -4.31 x 10 -5 -1.101

rrns wmaz/h 1.86 1.94 0.0637 1.103

e_, (pc) 254.8 278.1 0.228 165.07

e_,, (_e) 438.47 479.12 6.25 165.6

K

e, (pc) -0.527 -1.3 0.0043 111.9

K
e_m _ (pc) 217.95 244.256 6.245 112.05

Table 7. Statistics at 90db and 130db SPL

The influence of the thermal load at 90db is very pronounced, whereas at 130db

there is a very small difference. Both the deflection and strain show a high mean

at 80°F. A big increase in the linear component, e_ is also observed.

The change in the responses at the lower load level is also shown in Figs.29

and 30. The first is a comparison between the power spectrum for the nonlinear

deflection with and without thermal load at 90db SPL. The spectrum in this figure

can be understood by the time-histories plotted in Fig.30. The vibration at 80°F

takes place about some buckled position. This type of change is not present at

130db SPL.

Non-unit'orm Temperature AT = T(x, y, z)

The thermal load modifications to model a non-uniform temperature distribution

are now implemented. Data from experimental setups suggests that a panel exposed

to a bank of heat lamps intended to create a temperature distribution as close to

being uniform over the plate surface as possible, is, in reality, not at a uniform
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temperature. There is a drop in temperature near the edges of the clamped panel

[145]. This type of distribution, which is symmetric over the x-y plane, is modelled

here. Figure 31 shows the temperature variation assumed along both the x-axis and

the y-axis for the baseline plate.

The gradient through the thickness of the plate is known to be quite small.

Since the plates are thin, and the duration of exposure is sufficiently long, this

seems reasonable. This gradient usually does not exceed about 20°F. Hence, a

linear variation along the z-axis is assumed, with the maximum being on the external

surface (Fig.3). Therefore, the expression for the temperature variation in the plate

can be written as

T1
AT(x,y,z) = T(x)T(y) [To + -.-.ffz]

where To is a constant, corresponding to the temperature increase above ambient

atmospheric temperature. The slope in the z-direction is given by 7'i/h.

As mentioned in the introduction, this study is motivated by the structural

design requirements for the proposed high speed civil transport aircraft. It is es-

timated that the operating temperatures of interest are at about 350°F. Ambient

temperatures are assumed to be 70°F. Therefore, if the temperature differential for

the outside surface of the panel is at 280°F, the mid-plane temperature differential

is set at 270°F, to accomodate the gradient. Thus To = 270°F and T1 = -20.0.

The surface distribution, T(z, y) = T(x)T(y), is simply scaled by the To value as-

sumed. For a uniform temperature distribution, these are set to unity and T1 is set

to zero.

Since the previous result of this section showed a small thermal load influence at

the 130db baseline load level, this non-uniform temperature analysis is carried out

at the lower 90db SPL load. The finite element model uses the baseline 8 × 8 mesh

with twelve modes. The effect of each of the temperature distributions, namely,

uniform temperature, AT = To; temperature with surface variation only,
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AT = T(x,y); and temperature with variation on the surface and through the

thickness, AT = T(z, y, z) is studied. Results for mean and rrns deflection and

strain are compared for these three themal load assumptions. Table 8 lists the rms

values for this case. The element with maximum strain is one row away from the

edge in this case.

Overall, the differences in the temperature loadings do not seem to have affected

the response characteristics to a great degree. A quantity to observe , though, is the

curvature component of the strain, e_. It shows a significant increase from a uniform

temperature distribution to a surface gradient distribution. (In fact, at the very

edge of the plate, this component was found to be larger than the numbers above,

although the total strain still remained lower.) The temperature distribution, T(y),

shown in Fig.31, has the largest gradient along the y-direction close to this edge.

This surface gradient can be expected to create high thermal strain in this vicinity.

This possibly explains the change in e_ seen above.

To T(z,y) T(z,y,z)
, r

p W,,oz/h 2.575 2.53 2.53

rrns Wmax/h 2.58 2.53 2.58

% (pc) 578.86 581.7 581.7

er,,,_ (pC) 580.6 582.7 582.7

e_,,, (/_e) 76.6 103.3 103.3

Crams (_e) 514.6 489.1 489.1
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Table 8. Statistics vs Temperature Distribution - 90db
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The inclusion of a gradient of this particular magnitude in the z-direction does

not have any effect on the response statistics. The motion of the plate is so domi-

nated by the thermal force, that the thermal moment countering the moment due

to the dynamic load, makes very little difference. This may not be the case for

higher gradients.

5.3.5 Grazing Load

In this section results are presented for the pressure modelled as a plane-wave trav-

elling along the length of the plate. It is assumed that the angle of incidence of

Fig.3 is fixed at 90 °. In effect, the direction of propagation is tangential to the

surface of the plate, along the x-direction. The speed of sound is set at 343 m/s

(1.3504 × 104in./s). The case of a grazing pressure distribution is no longer symmet-

ric over the plate. The lower anti-symmetric modes, (1,2) and (2,1) must, therefore,

be included in the modal transformation matrix. Similarly, the lowest membrane

modes that were inactive under a normal load, may no longer be so. The plate model

used in this case is of an 8 × 4 mesh with the first six bending modes [(1,1), (1,2),

(2,1), (2,2), (1,3) and (3,1)] and four membrane modes. Thus, the total number of

modes used for the grazing load model is R = 10.

Response data are generated at 130db SPL. Apart from the center of the plate,

deflection time-histories are recorded at every node along the x-axis centerline (a

total of 15 non-zero nodal values). A linear simulation with grazing angle,/_ = 90 °,

with the six bending modes above is first carried out. The modal activity can now

be compared against the modal results for _ = 0 °, normal load linear analysis.

Given below are rms modal displacement, rms q_, values relative to rms ql, the

fundamental mode response, i.e.,

rms qr

rms ql
, r = 1,2,...,6
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(1,1) (1,2) (2,1) (2,2) (1,3) (3,1)

j3 -- 0 ° 1.0 0.0 0.0 0.0392 0.0948 0.0638

/3 -- 90 ° 1.0 0.0261 0.1295 0.0350 0.0866 0.0279

1.0099

Table 9. Rms ModM ratios

m

The contributions from each of these modes must be assessed with the individ-

ual mode-shapes in mind (Figs.9 and 10). The participation from modes (1,2) and

(2,1) when the load is modelled with angular incidence is expected. From the modal

rms values above it is clear that response in mode (1,2) is very weak. Mode (2,1) is

the strongest mode of response, apart from the fundamental mode. This mode, as

seen in Fig.9, has a trough and then a crest as one progresses along x-direction. Re-

sponse over the plate in this shape, then, is a direct consequence of the left-to-right

travelling wave assumption. The power spectrum for this grazing load response is

shown in Fig.32. The spectrum at a node 3.75in. away from the leading edge is

shown for both normal and grazing load models. This point was chosen as neither

of the two additional modes, (1,2) and (2,1), will show up in the center deflection

spectrum. Mode (1,2), is present in the response spectrum as a very small peak. A

look at this mode in Fig.9 will show that its amplitude along the x-axis centerline,

is small. Compounded with the relatively low modal rms level for this mode, the

modal contribution in the spectrum for that particular location is negligible. The

same is true for mode (2,2).

Deflection curves in Fig.33 show the centerline rms deflections recorded at

each node. They are plotted for both the normal and grazing load models. There

is a slight change in the shape but overall response behavior shows no significant

difference. Similarly, it was found that the PDF, power spectra and peak PDF
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distributions for maximum deflection showed little change. The power spectrum

in the case of the grazing load model drops off a little more than for the normal

load model, after about 500hz. The same trend was noticed in the strain response

comparisons, too. None of these plot are displayed since the changes are rather

insignificant.

5.3.6 Variation of Other Parameters

A few= additional cases, involving parameters such as initial stresses from static

compressive loads, N s, quadrilateral elements, and plate thickness are studied and

results are presented here.

Plate Thickness

The thickness parameter is studied by increasing the thickness of the baseline plate

configuration ten-fold. The thickness of each layer is increased from 0.006 in. to 0.06

in., resulting in total plate thickness, h = 0.48 in., with an a/h ratio of 31.25. The

8 x 4 mesh with a total of six modes (4 bending and 2 membrane) is used. Linear

and nonlinear simulations at 130db SPL are conducted. The centerline deflection

values are a/h = 0.002 for both the linear and nonlinear simulations. The strain

data, too, were found to be the same for both the linear and nonlinear simulations.

This implies that the responses of the plate are in the linear regime even at 130db

SPL. The power spectral densities, as expected, were found to be identical in the

two cases. As a matter of fact, although four bending modes were used, the modal

response at the first mode seemed to be the strongest.

Initial Stress

The nonlinear random responses of the baseline panel under an initial stress dis-

tribution are dealt with next. The initial stress distribution is accounted for using

constant static compressive loads on all its edges. There is, thus, no initial moment
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distribution in the plate. All other parameters of the simulation are the same as

used in the previous example. Simulation is at 130db SPL using a total of six modes

(4 bending and 2 membrane). The critical buckling static load for all four clamped

edges under compression was computed at Nx, N, = Nor = 20.23 lbs/in. There-

fore, an edge load, N a = N,r/2 is used for this case. It may be recalled here that

edge loads are set to be less than critical buckling load in the problem definition

(see Eqs.2.3.4 and 2.3.9).

The rms results for maximum deflection show the reduced stiffness in the plate

due to this additional load. The value obtained is a/h = 1.88. The corresponding

figure when edge loads are absent is 1.77.

Quadrilateral Elements

The Lagrangian element used in the finite element model in this study has so far

been used only as a rectangular element. This element can actually be used, more

generally, as a quadrilateral. This feature of the finite element model is demon-

strated with an example. Fig.34 displays the mesh structure used. The size of the

mesh used was dictated by the necessity to generate quadrilateral shaped elements

without any of them being too skewed. The mesh uses five elements along y-axis

and 8,6 elements along the longer x-axis edges, respectively. The lower number of

elements, along the y-axis makes the model stiffer along this direction, compared

to the 8 × 8 mesh. The modal transformation matrix used, consisted of 4 bending

modes and 2 membrane modes (R = 6). In order to compare data from this model

against the 8 x 8 baseline data, the four bending mode solution from the convergence

studies (Fig.12) is used here. Nonlinear simulation at 130db produced the following

rms results

a/h = 1.78 vs 1.78 for rectangular 8 × 8 mesh

erms = 497 pe vs 430 pe for rectangular 8 × 8 mesh
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The deflection numbers above are compared at almost exactly the same loca-

tion. The strain data are for elements of slightly different sizes. It is safe to say

that most of the change in results is due to the change in mesh size. It was observed

that the x-axis strain rms showed a similar degree of change.
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CONCLUSIONS
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A Monte Carlo simulation technique to study the response of composite plates

under combined acoustic and thermal loading has been implemented. Finite ele-

ment equations in the physical degrees of freedom were reduced to a smaller set

of modal equations of motion. An implicit numerical integration routine using a

weighting function was encoded. A modified pressure distribution model was also

generated. Response characteristics were obtained under realistic temperature dis-

tribution assumptions.

The modal decomposition of the large degree of freedom finite element model

proved very effective in reducing the number of equations used for obtaining so-

lutions. The formulation facilitated the inclusion of nonlinear stiffnesses without

having to build them up at every time-step. Especially for a time-domain simu-

lation procedure this technique is quite definitely a necessity. The computational

time required otherwise will make the simulation method impractical.

The numerical algorithm used appears to be a very useful tool [106]. The

extension of the Wilson-8 method to the nonlinear dynamic equation has worked

effectively. The algorithm is stable for fairly large nonlinearities at time-steps that

are not too small, (At = 10-4). But the step-size cannot probably be reduced

further since this is pretty close to the limit where amplitude decay and period

elongation are small. The use of a nonlinear algebraic equation at each time-step
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may be problem dependent. It was observed that for cases with moderate degrees

of nonlinearity (low a/h), solution of linearized equations at every time-step gave

acceptable results. These results showed consistently higher rms deflection values.

It is not likely, however, that strain results will be as accurate by using linearized
=

equations within each time-step. In general, doing away with the iterations within

time-steps, in effect becoming an explicit integration scheme, may be quite accept-

able for systems with moderate nonlinearities.

The modified load model was an effective tool in bringing out the complete

spectrum of modal response. The implementation of this space-time correlated

distribution did not add significantly to the computational cost. There was not

much difference in the overall response characteristics, although the strain response

shows a small degree of change. This is only true for the dimensions of the plate used

in this study, relative to acoustic wavelengths. The grazing load model may show

greater differences for a large or long plate. It will probably be more realistic to

use a completely random (spatial and temporal) pressure distribution over the plate

with this simulation scheme, since it can be implemented without much increase in

computational effort.

The results of simulations under combined acoustic and thermal loads have

shown some response features not reported before. The influence of higher thermal

buckling temperatures has been observed here, due to the unrestricted nature of

the formulation. The data presented in Chapter 5, were at a high random load of

130db. The same analysis at 90db, may have shown the behavior around buckling

temperatures in a more dramatic fashion. The phenomenon of snap-through be-

havior has also been simulated, although there is no way to approximately predict

its onset. The surface variation used for the temperature increment gives a more

realistic estimate of the temperature distribution in a plate. It would be interest-

ing to record strain data at locations where the surface thermal gradients are the
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steepest. Under a more severe thermal loading condition it is quite likely that the

maximum strain location will no longer be close to the long-edge mid-point for this

type of plate.

The consideration of thermal moments induced by a temperature gradient

through the plate thickness, does not seem to be much of a factor in the response

behavior. Due to the direction of gradient used (normal to the heated surface is

opposite to the dynamic load direction), there is probably a counteracting effect

from the thermal moments. But the alteration in the response characteristics due

to this gradient is still negligible. This is more so when the thermal load dominates

the dynamic load, at low decibel levels [83].

A significant observation of this study has been the sensitivity of strain response

characteristics to almost every parameter that influences the response behavior,

including element type and mesh size used, membrane interpolation functions used,

number of bending and membrane modes used, temperature distribution and load

model used. In practical applications under such loading conditions as discussed in

this work, it is the fatigue life performance of these structural components which

is of critical importance. This needs accurate information on the strain response

behavior of structures. Hence, it is important that strain response prediction models

are accurate.

In this context, the selection of mode-shapes to obtain converged solutions, is

a critical part of the model definition process. In turn, it depends on the criterion

chosen for modal convergence, namely, frequencies, deflection or strain. The num-

ber of modes required, in turn, decides the mesh refinement procedure. Given the

sensitivity of strain responses to all these factors, it is imperative that the conver-

gence criterion, for both mesh refinement and modal convergence studies, be based

on strain rather than deflections or natural frequencies. This tends to be the most

time-consuming aspect of problem solution. The mesh required to provide accurate
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strain results usually turns out to be large. In this study the eigenvector com-

putation algorithms used were all full-system solution methods. The computation

time for such solution processes for large degree-of-freedom systems, as we know,

increases tremendously. It is therefore recommended for future applications that

the eigenvalue-eigenvector computation algorithm used, be of the type that gener-

ates a limited number of modes, say, one based on the Rayleigh quotient method.

Once a good finite element modal transformation matrix has been obtained, the so-

lution for any type of loading case for that particular laminate follows through with

no restrictions. It is, therefore, recommended that future work focus on improved

treatment of all these factors.

Another aspect dealing with the particular type of laminate used in this study

is with regard to boundary conditions. It has been observed that the presence of

angle-ply layers removes the symmetry along the z, y-axes that a cross-ply laminate

would have. This, therefore, precludes the use of quarter-plate models in the finite

element mesh. The use of a quarter-plate model enforces symmetry conditions on

all rotations and displacements, where no such symmetry exists.

The simulation technique in combination with modal decomposition is proba-

bly the best tool to build on, for analytical comparison with test data. It is also the

best way to expand into coupled structural-acoustic prediction models. Its strength

lies in its ability to model complicated problems with a minimum number of assump-

tions and restrictions imposed. A vast library of time-histories can be used to give

a wide range of statistical and spectral information that puts the response charac-

teristics in clear perspective. In the process, one can observe behavioral phenomena

not otherwise detected by other analytical approaches. Such a simulation, with a

thorough modelling and statistical analysis of random responses under combined

loading conditions is, possibly, the major contribution of this work.
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Appendix A

Finite Element Shape Functions

--=
W

--=

w

m

The Lagrangian quadratic interpolation functions for a 9-node quadrilateral

isoparametric element are listed below [135]. The variables (, 77 are natural coordi-

nates whose range is -1 < (_, 7/) < 1. They are defined such that

9 9

v _w _¢=,a_V)Ni(x,y) = E(x"y')N' (u'v'w'¢z'd2_) = E(a_'a"ui ,u,
i=1 i=1

are valid transformations.

1(1 - _)(1 - _)_r]

Y_ = -_(1 - _)(1 - _)_
1

Y_ = -_(1 + 0(1 - _)(_

N, = -½(1 - ()(1 - _)(

Ns - (i - _)(I - 7/2)

I 7?2
N6 = _(I + _')(i- )_

N7 : -1(1 - _)(i -I-7/)_r/

Ns = 1(1 _2)(i + r/)r/

N9 _(1 -I- _')(1 + r/)_r/
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Appendix B

Formation of Element Matrices

Mass matrix

This matrix is detailed first. The inertias, I, and shape functions, Ni, have

been defined earlier (Chapter 2 and Appendix A).

elements

[M]{ti} = E [Me]{tie} =

rmm 0 0]/ m}LOo_oo o _ - _0 rn ¢¢ _i¢

"11 N, Ni 0 0 0 0

0 I_ N, Nj 0 0 0

0 0 I_N, Nj 0 0

0 0 0 I3 N, Nj 0

0 0 0 0 I3N, Nj

e °" tJ

aj

• " 12

aj

Jne' _7 '

• ° t_tl

, aj

where i,j = 1,..., 9; f_" is the area over an element; [M e] is a 45 x 45 element mass

matrix consisting of sub-matrices [rnmm], [rn ww] and [m¢¢]. The element accelera-

tion vector {_ie } in turn consists of the corresponding sub-vectors _im , a t', and _i¢.

The global matrix, [M] is of order Ndf.
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Load Vector

At a single time-step, say the n th time-step, the global load vector is given by

{°/elements 1" 0

{ pn(t) } = pn(t) E / Ni df_ e
dfl " 0

0

elements

= pn(t) _ {F e} = pn(t){F} (2)

where p,(t) is the magnitude of the pressure distribution at the n th time-step. The

vector { F } is a global vector of length Nal, representing unit pressure acting over

the surface of the plate. The final form { P(t) } is also of length Nay.

Note that of the 5 degrees of freedom per node, all terms for integration within

an element (for the element load vector) except the one corresponding to the a _

degree of freedom are set to zero. Load in the transverse direction is the only one

being treated in this work.

Linear Stiffness Matrices

The terms in Eq.(2.4.10) generate the following submatrices at the element

level. Indices p,r,s,t = 1,... ,9 and l,k = 1,..., 18.

fn Aij_d;,_ dO e
e

= L* AijCilCj, df_ _ a'_ 5a'_

_- kl_ m ar_ _a_ (3)
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fn Aij_&'_ df_ _

"-- mijcilC;p d_'_ _ a; _a_ a

and

fo Bij_:j&'_' dft"
ii k • •

correspond to Sap

a_ v ,

"-" _fl, BijCiiCjk doe aCk 6a7'

= G* (5)

rows, with ar including a_,a;. Similarly, at¢ includes %¢- and

f _ $ _ I11 112,
= N i C,.. dO" &(a,. a,, )

j_ $ 10 121 113 lIJ U1
= N i C,., dO" (Sa,. a, + a,. 5a, )

it

-w$ Tw$'l w c w
-- [krs q- tCsr ]as Oar

yw$ w _a_"- _ra as
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and

9fne N2T 6e_ dfl"

L_

w

N'._T('_. w d_'_e _(a r a 8 )

= _. NprCS, da" (_a_a;" + a_ar)

= =

m

.wAT w _a w--- Krs as

are linear matrices corresponding to (fa_ rows.

(7)

w

jfn Aije'_Se_ dfP
e

= j[ A'iC_CJt d_ e a_ _aWr

6a_= k:F ak

where [k °''] is the transpose of the matrix in Eq.(4),

(8)

_ Aiiey6e7 d_ _

= _, AiM_c;,

ap
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and

fn, Bii_iSe_ dft"

all from wo, correspond to ,_a_ rows.

(10)

fn, Biie] 5_i df_"

= ffl, BiiCitCjkdf_" a'_ _aCt

= k_-or _o¢,

where [k e''] is the transpose of the matrix in Eq.(5),

fo Bii¢_8_i dfl e

f_ W
"- BijCitCjp d_ eap _aCl

(11)

= k;o°; _,*

where [k ¢°] is the transpose of the matrix in Eq.(lO), and

(12)
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_n, DiJmJdmi d_e

DijCitC.it dfl _ a '_k 6a_t

w

.V.,¢ Vet t_
-_- tClk a k OCLl

correspond to Ja/_ rows. Linear matrices from shear energy _erms are

e

03)

= ks_ _ a_ Ja?
(14)

=_

= f., A:_A,.°BLBZ,_,

(15)
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9[Q 2 ,1, w
1(. Am.%_ 57m

¢t

dft •
D

2 ¢ w
"- 1C A,,,B.l_Bmr dft" aCk 5a_

t

= ks_k¢ a_ 5ar" (16)

where [ks w_] is the transpose of the matrix in Eq.(15), and

g

Iil

n
u

2 W tv
1_ A,,,."r. 5_,_ dfl" w

g

In 2 _ w _ _ Sa_= K A..,.B,..,.B.p dfl ap

Nonlinear Stiffness Matrices

Other than one second-order term which is a cubic function of {a_'), all the

other nonlinear energy expressions are first-order terms, quadratically dependent

on {a_'}. These are all listed below.

/n Aije_Se'_ dfl _
e

u

W

m
I
U

w

_I

U

z
m

= _Cllp s (Ip a s

+ Cj,p)C. dfl* 5a7'
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k-z

E

corresponds to (ia_' rows. The nonlinear strain tensor C_s

ric to be consistent with w,= w,_ = w,y w,=.

has been made symmet-

hm

= fn, AijC.ikCi_,

- fn Ai'iC'ikC_ irs

df_ e a 7 _(aWraWs)

d_ e a'_ (aW_a w + aWSaWr )

m

-win Twrn_ w

w

= klrWsr_a w a 7 _a w (19)

This is twice the transpose of klt"_. The second-order nonlinear function of {a _}

is given by,

f Aoe_e _dfl _
e

fn A,jCj_tC,'_° dQ _ _ _ _: ap a t _(a r a s )

f_ w W 11.3 113 W W W W= AijCjv,Ci_ , dft _ % at (_a r a s -t- a r _a s )
e

- W_O T_ 1 W W

: [krspt "_- tC,srtpJa s ap a_ _ay

= k2,.w,'_ta'_a'_ a'_ gay (20)
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The other flrst-order functions of {ato} are,

/n. Aije_&_' dfP

A_jC_pCi_ , d_ eap

0 to tO UI 111 to to

AijC_pCi_ , d_ _ at, (% gas + a, $a_ )

--UIO

[KfLr$ p + _"UIO] IX/ to to-- tCsrpJa s ap _a r

..too to W fa _-- tClrspa s ap (21)

In. BijKjge_' d_ _

B,jCitC,_ , d_ _ a_ _(a_O a '_)

j_ _ to Ill It) to
= B,jCj.C,_. en • _ (_ _ao + _. _ )

r._¢1-,0ack_a:= [k:_ + ..o_,,,,

- kl _'-_ a_ ga_-- rskCJs

142

(22)



i :
and

e

= + c_,.)c_dfl" _a_, zAq(C_, % a,

= [kl_.p_a,']ap6a_

As in an earlier relation, kl_p_ is half the transpose of klr_,. And

(23)

L_

W

1 W W= • _Bij(C_, s 4" C_s,)Cada t apa, $aCt

we
is half the transpose of kl_, k. This term corresponds to 6at ¢ rows.

The constant terms in the strain energy are

= :fn, N_ Cit 6a[' dfl"

(24)

(25)
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f_, N_ r &? _' ....

-- j_, N_ T Cil 6a_ dR"

-.- prAT _ar

(26)

__05 r w

Pr Oa r

(27)

-- " - 7

and

= /. N,_TC;:_y d_"

-- p_AT _awr

(28)

_, M_T &¢id_
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= ,

. =

_m

?:-

= fa" MpT Cn _iaCt dQ e

Eqs.(3-29) can be put in a matrix form at the element level as follows

| k °m k °° +ks"" k °e +ks _ + 0 k _s

[ k Cm k ¢° +ks ¢'' k ¢¢ +ks ¢_ 0 0

(29)

0 00] I 0 [kl'_]{a"} " 0
0 k wAT 0 -1- [klwm]{a w} [klW° + kl°Wl{a w} [klWV]{a w}

0 0 0 0 [kl¢_l{a w} 0

[! o !]){am}{pro,}+ [k2W,_l{a,_}{a,_} a w + pOS _ poAT

0 a ¢ 0 pq_AT

where all matrices and tensors are of order 45.

(30)

The linear stiffness matrix above is completely symmetric and so is the second-

order nonlinear matrix. The submatrices corresponding to the {a m } and {a ¢} rows

in the first-order matrix [kl] (12 and 32 positions) are transposes and half of the

submatrices in the corresponding transpose positions of [kl] (21 and 23 positions).

The rest of the submatrices are symmetric. Thus, at the global assembled level we

now have

elements

([Mel{ he} + [Cel{a e} + [K e + K se - KATel{ae } + [Kle]{ae}{a e}

+ [K2e]{ae}{ae}{ae} + {poe} _ {pare})

elements

= p(t) E {Fe} (31)
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U

which results in the equation of motion w

[Ml{a} + [C]{a} + [K + K s- KAT]{a}

+ [K2l{a}{a}(a} + {ps} _ {p,_T}

= {p(t)}

as in Eq.(2.5.1). This system is of order Ndl.

+ [K1]{a}(a}

(32)

J

E

U

U

==

W

N

L _

i

M

w
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Append_ C

Numerical Integration of Modal Equations

To proceed with deriving the nonlinear algebraic equations, the weighted in-

tegral of the modal system of equations within one time-step is rewritten below.

Note that p,(t) between the two time-steps, t,+] and t,, has been replaced by p_(t)

as in Eq.(3.1.8). The time subscripts n and (n + 1) are used as superscripts for

subscripted variables.

tn+l (

k
iln

_,+1..n+1 ..,+1 o pAT }+ klii, q'_+]q'_ +1 + k2q,t_j 'tk 'it + _i(t) + p, - dr = 0 (1)

J

Each one of the terms in the integrand will now be integrated in the manner of

Eq.(3.1.5). The integration of the inertia term upon substitution of Eqs.(3.1.3) is

as follows

|n+l

I
tn

W(,)m,j
tn+l

f W(rldr
tn

tn+l

f
tn

W(r)mi) ( _17 + _3)"r ) dr

tn+l

f W(r) dr
t.
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- _,,(q; + oT"6,_t)

•_,= 60w .
= _" (q_+ 37 d; ) (2)

n _(3)n
where dj and uj axe related as in Eq.(3.1.9). The free parameter 0a has been

written in terms of the Wilson-0 parameter, Ow, as defined in Eqs.(3.1.7).

In the same way, the damping term gives

|n-_-I

f w(,)c,i i1"_+ _ dr

tn+l

f W(r) dr
tn

i

tn.(-I

f
In

.. _(3). r2/2) dr

t.+l

f W(,ld,
tn

-n " _(3) n 0 A_2

:- 30_V
= c,,(q, + _ d; )

Lit

Note that the usage of qj here includes the Wilson-0 parameter with 01

Similarly, the linear modal stiffness matrices together generate

tn+l

f
tn

w(,) [k,, + % - kU] q;+'_,
tn+l

j W(,ld,
tn
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-- i

T_

..L

;7

_n+l

AT _ (3) n 7.3/6) drf w(,) [k,, + % - k,, ](q7 + 07_+ 0?_/2 + _,
In

tn+l

f W(Tldr
tn

s AT n .n ..n o At2 _(3) no3At3= [k,j + % - k_j ](v + v°,_t + v _-7- + _, -g-)

= [k,, + k_ - k,__"] (¢; + o_e? ) (4)

Here again q] includes 01 = Ow and 02 = 0 2 in its expression. The {_} terms in

Eqs.(2), (3) and (4) above, contribute to A0_ and the d" terms to A_j.

The quadratic and cubic tensor terms will be dealt with next. When using

Eqs.(3.1.7) for the free parameters after integration, Ow and At occur together

with like powers. This will be used in organizing the many terms as constant,

linear, quadratic and cubic expressions of d".

The first-order nonlinear tensor term, thus results in

I_11 -/t- !

f l/V(r)klijkqT+'q_ +' dr
tn

D

tn+l

f w(_)d.
|n

tn+l

f WO) kl,,_ ×
t_

|n-l-1

f W(_)d_
tn

"" -(s)"r3/6) (q[ + _'r +/h"_2/2 + _(_3)"_s/6)d_(q7 + glTr+ q?_12 + -j

" At2"" . .._)-2 Ate"= klij_(q7+ q70_m + O?Ow-g-)(q.+ q;O_ZXt+ q_Ow-5-)

which are all constant terms contributing to AOi,
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+ klijt dj Ow(ql , + + _], Ow--'_- ) + dk Ow(qj + +
k

which are linear terms contributing to Aij,

.ln.ln L)6 )+ klijk uj t, k v w

which is the quadratic term from klijk contributing to Alijt.

(s)

In equation (5)

n-2 At2"kl,jk d;'O_(q_+ _'_owzxt+iik Ow-T-)

At 2 ,

= (kl,j, + kli,j)d?e_(q'; + _';O,,,',t + _tO_--_-) (6)

This property will be directly used in case of the second-order tensor whose

integration gives

n3n_;OwAt /jjnO_v '_2 )]+ d_ 0 w (qj + +

tn+l

f W(7-)1-_ _n+l_n+l_n+l drx/.ijkl (tj tlk ill
In

m

/n-t-I

f W(_ld_
f,,

Itn+l [f Ur(r)k2ijkt (q']
t.

(_)"_3/6)×+ ¢;," + q?,'_/2 + _,

tn-t-1

f W(_ld_
tn

n At2"= k2,ik,(q) +(Z']Ow_t+q;O_--T-)×

•.. -2 At2" ... -2 At_"

(q'; + egOw_t + q_,_w-5--)(q? + _?OwAt+ q, _w--y-)

which are constant terms contributing to AOi,
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+ (k2, k,+ k2,,jk+ k2, ,,)J?0k×

,, At 2 ,(q[ + 4[ewAt + q_e_v )(q_' + i1'_OwAt + qt"O2w'--_')

which are linear terms contributing to Aij,

+ (k2ijkl + k2itjk + k2iktj ) uj'tn'_na6t,k _,W×

•"n -2 At2 "
(q? + il_OwAt + q, #w'-_-)

which are quadratic terms contributing to Alijk,

.I n .l n .l n _9 }
+ k2ijtt-j '*t -t vw

which is cubic in d" and gives A2ijkz.

(7)

The rest of the terms in (1) are not dependent on 7" and hence remain un-

changed. They add to AOi to form

AO, - AO,({6},p, p°, p_r) (S)

The vector AOi remains unchanged with iterations and is only updated at every

successive time-step.

Therefore, grouping all the above terms as cubic, quadratic, linear and constant

in d n, we arrive at

A2ijl, ld;'d_d[' + Alijkd_d_ + Aijd_' + AOi = _i(d) = 0 (9)
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